Developer's Guide
11g Release 2 (11.2) for Microsoft Windows
E10591-05
January 2011
Oracle COM Automation Feature Developer's Guide, 11g Release 2 (11.2) for Microsoft Windows
E10591-05
Copyright © 1999, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tulika Das
Contributors: Neeraj Gupta, Janis Greenberg, Eric Belden, Steven Caminez, Jagadish Changavi, Barmak Meftah, Valarie Moore, Vikhram Shetty, Sujith Somanathan, Alex Keh, Christian Shay, Riaz Ahmed
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document is your primary source of introductory, installation, postinstallation configuration, and usage information for Oracle COM Automation Feature.
Note: Oracle Database 11g Release 2 (11.2) is the last database version that supports Oracle COM Automation feature. Oracle Database versions, which are released after Oracle Database 11g Release 2 (11.2), will not support Oracle COM Automation feature. You can continue to use Oracle COM Automation feature with existing Oracle Database versions that are covered under the lifetime support policy of Oracle. |
This document describes the features of Oracle Database for Windows that apply to the Windows 2000, Windows XP, and Windows Server 2003 operating systems.
This Preface contains these topics:
Oracle COM Automation Feature Developer's Guide is intended for developers who develop solutions that use COM.
To use this document, you need familiarity with:
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see these Oracle resources:
For information about Oracle error messages, see Oracle Database Error Messages. Oracle error message documentation is available only in HTML. If you only have access to the Oracle Documentation CD, you can browse the error messages by range. Once you find the specific range, use your browser's "find in page" feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.
Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter describes the Oracle COM Automation Feature Software Development Kit (SDK) and provides an overview of the product. Read this chapter before installing or using Oracle COM Automation Feature.	
Note: Oracle Database 11g Release 2 (11.2) is the last database version that supports Oracle COM Automation feature. Oracle Database versions, which are released after Oracle Database 11g Release 2 (11.2), will not support Oracle COM Automation feature. You can continue to use Oracle COM Automation feature with existing Oracle Database versions that are covered under the lifetime support policy of Oracle.	
This chapter contains these topics:	
Oracle COM Automation Feature enables you to use Component Object Model (COM)-based components to customize and enhance the functionality of the Oracle database on Windows operating systems.	
You can build your own custom components or use the thousands of prebuilt components that are available from third-party independent software vendors (ISVs).	
Oracle COM Automation Feature provides a mechanism to manipulate COM objects through either PL/SQL or Java.	
IDispatch	
interface. IDispatch	
interface. IDispatch	
interface supports three basic operations for any COM object: When an Oracle COM Automation Feature application programming interface (API) is invoked from PL/SQL or Java stored procedures, Oracle COM Automation Feature converts the parameters to the appropriate COM Automation data types and then invokes the corresponding IDispatch	
API with the converted parameters.	
See Also: Chapter 3, "Oracle COM Automation Feature Core Functionality" for descriptions of the data types and APIs	
Oracle COM Automation Feature for PL/SQL provides a PL/SQL package and exposes a set of application programming interfaces (APIs) to instantiate COM objects. Developers can call these APIs from PL/SQL subprograms, stored procedures, stored functions, or triggers to manipulate COM objects.	
There are no restrictions concerning where these COM objects reside. They can be local to the database or accessed remotely through the Distributed Component Object Model (DCOM).	
Oracle COM Automation Feature for Java provides a set of Java APIs to instantiate COM objects. Developers can call these APIs from Java stored procedures, Java functions, or Java triggers to manipulate COM objects.	
Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can use dllhost	
to support in-process servers.	
Oracle COM Automation Feature is a powerful and enabling infrastructure technology for Oracle developers on Windows. It has the following advantages:	
Oracle COM Automation Feature exposes a simple set of APIs to manipulate COM objects. If you are familiar with COM and Microsoft Visual Basic, you can easily incorporate these APIs into your PL/SQL subprograms or Java programs.	
Oracle COM Automation Feature enables you to leverage prebuilt COM components that have been developed in-house or by third-party independent software vendors (ISVs). In addition, there are thousands of existing COM components from which you can choose. The COM component market is expanding rapidly and offers solutions to many common programming problems.	
You can use Oracle COM Automation Feature to customize and enhance the functionality of the database server. Through the use of COM components, the Oracle database can be customized to:	
The possibilities for customization and extensibility of the database server are limitless.	
Oracle COM Automation Feature enables you to deploy Oracle Database in a combined Oracle and Windows environment. You can be assured that Oracle COM Automation Feature integrates fully with and capitalizes on the services that are exposed by Windows, Microsoft BackOffice applications, and Microsoft Office applications.	
Applications using Oracle COM Automation Feature are written in Java or PL/SQL, which are platform-independent. Only the database instance that needs to invoke COM components must be run on Windows.	
Figure 1-1 illustrates the interaction between an Oracle database with Oracle COM Automation Feature, client applications, and server applications.	
The architectural differences between Oracle COM Automation Feature for PL/SQL and for Java are described in the next two sections.	
Oracle COM Automation Feature for PL/SQL provides a package of PL/SQL APIs for manipulating COM objects. These APIs are implemented as external procedures in a dynamic-link library (DLL).	
Oracle supports external procedures that enable developers to call third-generation language (3GL) functions from server-based object type methods and stored procedures. External procedures are invoked exactly like standard PL/SQL stored procedures. However, unlike standard PL/SQL procedures where the body of the procedure is written in PL/SQL and stored in the database, external procedures are functions in the C programming language that reside within a DLL. You can invoke Oracle COM Automation Feature APIs in the same manner in which you call a standard PL/SQL stored procedure or function.	
Figure 1-2 shows an Oracle database invoking COM Automation external procedure APIs.	
The database server invokes any of the COM Automation external procedure APIs as follows:	
orawpcom	
VER	
.dll	
) where VER	
is the release version. extproc.exe	
, if it has not already been started for the current user session. extproc.exe	
. extproc.exe	
file loads the DLL and executes the external procedure. Each of the COM Automation external procedure APIs in turn calls Win32 APIs that instantiate a COM object, set or get properties of a COM object, or invoke a method of a COM object. The extproc.exe	
file acts as an intermediary and handles any interaction between Oracle COM Automation Feature and the database server. The dependence on external procedures by Oracle COM Automation Feature for PL/SQL has implications for the availability of the database server.	
You do not jeopardize the availability of the database server by using Oracle COM Automation Feature and custom or third-party COM objects in a production environment. Oracle COM Automation Feature operates outside of the Oracle kernel's address space. This safeguards the Oracle database from COM objects that stop abruptly.	
Oracle COM Automation Feature for Java is implemented by the Java Native Interface (JNI). The key components of this architecture are the Automation	
class and the Java COM Proxy DLL, orawcom	
VER	
.dll	
, where VER	
is the release version.	
The interface is the Automation	
class, a Java proxy to the COM Automation server. The Automation	
class provides the methods necessary for developers to manipulate COM objects through the IDispatch	
interface.	
The Java-specific COM proxy, orawcom	
VER	
.dll	
, enables Java functions to invoke their corresponding COM functions.	
Figure 1-3 illustrates implementation of Oracle COM Automation Feature for Java.	
This chapter provides an overview of the Oracle COM Automation Feature installation and postinstallation configuration tasks.	
This chapter contains these topics:	
The Oracle COM Automation Feature package is included as part of the Oracle installation. It contains the features and demos that illustrate how to use this product to solve real-world problems.	
The COM Automation package includes the following PL/SQL and Java components:	
The PL/SQL components for Oracle COM Automation Feature are:	
orawpcom	
VER	
.dll	
) comwrap.sql	
) comus.msb)	
Oracle COM Automation PL/SQL feature orawpcom	
VER	
.dll	
is located in the ORACLE_BASE\ORACLE_HOME	
\bin	
directory.	
All other components are located in the ORACLE_BASE\ORACLE_HOME	
\com	
directory.	
The Java components for Oracle COM Automation Feature are:	
orawcom.jar	
orawcom	
VER	
.dll	
) grant.sql	
script file Oracle COM Automation Java feature orawcom	
VER	
.dll	
is located in the ORACLE_BASE\ORACLE_HOME	
\bin	
directory. All other components are located in the ORACLE_BASE\ORACLE_HOME	
\com\java	
directory.	
Oracle COM Automation Feature requires:	
Note that you must have a COM Automation server in the system to use Oracle COM Automation Feature. For example, the COM Automation Feature demos require that you first install the applications that are used in the demonstration programs:	
The demonstrations and installations are discussed in "Overview of Oracle COM Automation Feature for PL/SQL Demos" and "Overview of Oracle COM Automation Feature for Java Demos".	
To upgrade Oracle COM Automation Feature from Oracle Database 10g Release 2 or Oracle Database 11g Release 1 to Oracle Database 11g Release 2, do the following:	
Configuration procedures differ for PL/SQL and Java as explained in the following sections:	
To configure Oracle COM Automation Feature for PL/SQL:	
SYSTEM	
. CREATE LIBRARY	
privilege to the database users who will use Oracle COM Automation Feature. For example: comwrap.sql	
script at the SQL*Plus prompt: In the preceding command, ORACLE_BASE\ORACLE_HOME	
represents the Oracle home directory where Oracle COM Automation Feature is installed.	
You will receive several ORA-04043:	
object	
XXXX	
does	
not	
exist	
messages when you run this script for the first time. These messages are usual.	
Perform the following to configure Oracle COM Automation Feature for Java:	
SYSTEM	
using SQL*Plus. For example: grant.sql	
script with the name of the user who will use Oracle COM Automation Feature. You may need to capitalize all letters in the user's name. For example: loadjava	
tool at the command prompt as follows:	
ORACLE_BASE\ORACLE_HOME\com\java\orawcom.jarIn the preceding command, hr	
is the user who uses Oracle COM Automation Feature.	
This section describes the specific configurations for the listener.ora and tnsnames.ora files when used with Oracle COM Automation Feature for PL/SQL.	
Note: Oracle COM Automation Feature for Java needs no special modifications to the listener.ora and tnsnames.ora files.	
Because Oracle COM Automation Feature for PL/SQL relies on listener callouts, you must configure the listener and Oracle Net remote procedure call (RPC) mechanism for the feature to work.	
The following are examples of listener.ora and tnsnames.ora files that can be used with interprocess communication (IPC) to invoke external stored procedures.	
See Also: Oracle Database Net Services Administrator's Guide for additional information about configuring thelistener.ora and tnsnames.ora files for external procedures	
listener.ora Configuration File	
tnsnames.ora Configuration File	
An "ORA-28575: unable to open RPC connection to external procedure agent" error message indicates one of two possible listener problems.	
Problem 1	
Problem: The listener is not started.	
Action: You must start the Oracle	
HOME_NAMETNS	
Listener	
service from the Control Panel or the command prompt.	
To start Oracle services from the Control Panel:	
The Control Panel window appears.	
The Services dialog box appears.	
Oracle	
HOME_NAMETNS	
Listener	
in the list and verify that it has a status of Started. If it does not, select it and click Start. To start Oracle services from the command prompt:	
Enter the following command:	
In the preceding command, service is a specific service name, such as Oracle	
HOME_NAMETNS	
Listener	
.	
Problem 2	
Problem: The listener is not configured correctly.	
Action: You must modify the listener.ora	
and tnsnames.ora	
files.	
Oracle COM Automation Feature supports the use of Distributed Component Object Model (DCOM) to access remote Component Object Model (COM) objects over a network.	
To authenticate the client's access to the remote computer, DCOM passes the appropriate security credentials to the remote computer. The remote computer validates the security credentials and allows DCOM to proceed.	
These security credentials are based on the domain user's privileges associated with either the client's listener service or database service. Table 2-1 indicates the determining service for COM Automation for PL/SQL and Java.	
To use DCOM, you must configure security settings on the following:	
The configuration for the computer running the database instance requires setting the listener and the database service to the same domain user.	
In this procedure for setting a service to a domain user, the service to be set is selected in Step 3.	
You must follow this procedure twice, first to set the listener and then to set the database service. The order is unimportant.	
To set a service to a domain user:	
Oracle	
HOME_NAMETNS	
Listener	
or the database service. Configuring the computer containing the remote object requires using the dcomcnfg.exe	
tool provided by Microsoft to configure the computer's DCOM security settings.	
This tool enables you to set the access permissions, launch permissions, and configuration permissions for a specific COM object or all COM objects on a computer.	
Using the dcomcnfg.exe	
tool, set the following:	
If the COM object attempts to perform an action for which it does not have permission, DCOM denies the operation and returns a security violation to Oracle COM Automation Feature. It is essential that you configure the DCOM security properly and provide the Oracle Database with the necessary permissions.	
See Also: Microsoft documentation for more information about:	
This chapter describes aspects of the programming interface for Oracle COM Automation Feature.	
This chapter contains these topics:	
Because Microsoft COM Automation uses COM Automation data types, and Oracle COM Automation Feature uses either PL/SQL or Java data types, Oracle COM Automation Feature must convert the data that it receives and pass it to the COM Automation object. Similarly, Oracle COM Automation Feature must pass the data that it receives from the COM Automation object and convert it.	
Table 3-1 shows the mapping between PL/SQL data types and COM Automation data types.	
This guide follows a convention where COM Automation data types are prefaced by an initial p when used as IN	
OUT	
or OUT	
parameters. Data types without the initial p are IN	
parameters.	
Table 3-1 PL/SQL to COM Automation Data Types	
PL/SQL Data Type	COM Automation Data Type
---	---
Note: Oracle restricts aCY and pCY value to be between -9999999999.9999 and 9999999999.9999.	
Table 3-2 lists the supported COM Automation data types and related mappings to Java data types.	
All data type mapping applies to properties, arguments, and return values, except void	
, which applies only to return values.	
Table 3-2 Java to COM Automation Data Types	
Java Data Type	COM Automation Data Type
---	---
HRESULT	
error codes are provided by the Microsoft Windows API.	
An HRESULT	
is a COM error code of the hexadecimal form 0x800nnnnn. However, it has the decimal form -214nnnnnnn. For example, passing an invalid object name when creating a COM object causes the HRESULT	
of -2147221005 to be returned, which is 0x800401f3 in hexadecimal form.	
For complete information about the HRESULT	
return code, refer to the Microsoft documentation.	
The PL/SQL APIs return an integer return code. The return code is 0	
when successful, or a nonzero value of HRESULT	
when an error occurs.	
See Also: "GetLastError" for additional information about how to interpret the return codes from Oracle COM Automation Feature	
Oracle COM Automation for Java uses standard Java exception mechanisms. Specifically, a Java exception class, oracle.win.com.COMException	
, is introduced to represent COM errors.	
This exception is thrown by the Automation	
Java class when an error occurs.	
The error information provided by this exception is similar to that provided by the PL/SQL API GetLastError	
function.	
Note: TheHRESULT data member has the same meaning as the value of HRESULT returned by the PL/SQL functions.	
If the COM error is DISP_E_EXCEPTION	
as indicated by the excepInfo	
data member, COMException	
uses the source	
, description	
, helpfile	
, and helpid	
data members. Otherwise, these data members are not valid.	
The COMException	
writes an error message representing the COM error to the errmsg	
data member.	
Table 3-3 lists the COMException	
data members and their descriptions.	
Table 3-3 COMException Data Members	
Member	Description
---	---
is an	
is the textual representation of	
is the	
is the error description.	
is the fully qualified path name of the	
is the help context ID of a topic within the	
is	
Code Sample	
This example demonstrates the COMException	
exception.	
This section discusses the required information and the general steps to build a solution using Oracle COM Automation Feature.	
Review the following information about the COM objects that you intend to use:	
The following string is an example of a progID	
:	
Use the progID	
with the API that instantiates the COM object.	
IDispatch	
interface. Usually, the ISV provides documentation describing the names and data type of the object's properties and the prototypes of the object's methods. Properties are referred to by a descriptive string, such as xpos	
or ypos	
. A property can be any standard COM Automation data type, such as INT	
or BSTR	
. The GetProperty	
and SetProperty	
APIs take the property name and a variable of the appropriate data type. Methods are referred to by a descriptive string, such as InsertChart	
. A method takes a set of parameters that are of different COM Automation data types and returns a COM Automation data type. The following is an example of a COM Automation method prototype in COM Interface Definition Language (IDL) grammar:	
Interfaces define object methods and properties. COM IDL is used to specify interfaces that are defined on COM objects.	
Microsoft provides a tool called the OLE/COM Object Viewer with Microsoft Visual Studio for browsing the properties and methods of COM objects on a local system. This tool enables you to quickly and easily determine the properties and methods that each COM object exposes. See Figure 3-1 for an example.	
In a typical use of Oracle COM Automation Feature, you design a Java class or PL/SQL block to create and manipulate a COM object. The class or code block performs the following steps:	
CreateObject	
Create	
method GetProperty	
to get a property value SetProperty	
to set a property value to a new value Invoke	
to call a method To prepare for the Invoke	
call, you use InitArg	
and SetArg	
to package the argument to be sent to the COM Automation method.	
GetLastError	
in PL/SQL to get the most recent error information DestroyObject	
in PL/SQL or Destroy	
in Java This section lists and then describes the APIs available for Oracle COM Automation Feature.	
Oracle COM Automation Feature externalizes the following APIs for Java development:	
This section describes the PL/SQL APIs for manipulating COM objects using the COM Automation interface. Each of the following PL/SQL stored procedures resides in the package ORDCOM	
.	
This API instantiates a COM object in a COM Automation server.	
Syntax	
Remarks	
The created COM Automation object is freed with a corresponding call to DestroyObject	
. This nullifies the internal representation of the object in the Oracle COM Automation Feature and releases all interfaces associated with the object.	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
Code Sample	
This API destroys a created COM Automation object.	
Syntax	
Where	Is
---	---
objecttoken	the object token of a COM Automation object previously created by CreateObject .
Remarks	
Calling DestroyObject	
nullifies the internal representation of the object in the Oracle COM Automation Feature and releases all interfaces associated with the object.	
This function returns 0	
when successful, or a nonzero value of HRESULT	
when an error occurs.	
Code Sample	
This API obtains the COM Automation error information about the last error that occurred.	
Syntax	
Where	Is
---	---
source	the source of the error information. If specified, it must be a local CHAR or VARCHAR variable. The return value is truncated to fit the local variable if necessary.
description	the description of the error. If specified, it must be a local CHAR or VARCHAR variable. The return value is truncated to fit the local variable if necessary.
helpfile	the Help file for the COM Automation object. If specified, it must be a local CHAR or VARCHAR variable. The return value is truncated to fit the local variable if necessary.
helpid	the Help file context ID. If specified, it must be a local INT variable.
Remarks	
Each call to an Oracle COM Automation Feature API (except GetLastError	
) resets the error information, so that GetLastError	
obtains error information only for the most recent Oracle COM Automation Feature API call. Because GetLastError	
does not reset the last error information, it can be called multiple times to get the same error information.	
This function returns 0	
when successful, or a nonzero value of HRESULT	
when an error occurs.	
See "Microsoft COM Automation Errors" for a description of the types of errors that can be returned by this function.	
Code Sample	
This API returns the property value of a COM Automation object.	
Syntax	
Where	Is
---	---
objecttoken	the object token of a COM object previously created by CreateObject .
propertyname	the property name of the COM object to return.
argcount	the index of the property array. If the property is not an array, then the developer should specify 0 .
propertyvalue	the returned property value. The returned property type depends on the COM Automation data type that is returned. You must pass the PL/SQL data type that corresponds to the COM Automation data type of the COM Automation property. Otherwise, the COM Automation Feature will not properly convert the COM Automation data type.
any_PL/SQL_data type	any data type supported by COM Automation Feature.
Remarks	
If the property returns a COM object, then you must specify a local variable of data type BINARY_INTEGER	
for the propertyvalue	
parameter. An object token is stored in the local variable, and this object token can be used with other COM Automation stored procedures.	
When the property returns an array, if propertyvalue	
is specified, then it is set to NULL	
.	
This function returns 0	
when successful, or a nonzero value of HRESULT	
when an error occurs.	
Code Sample	
This API sets a property of a COM Automation object to a new value.	
Syntax	
Where	Is
---	---
objecttoken	the object token of a COM Automation object previously created by CreateObject .
propertyname	the property name of the COM object to set to a new value.
newvalue	the new value of the property. It must be a value of the appropriate data type.
data type	the explicitly specified data type of the value passed in. The available data types are:
any_PL/SQL_data type	any data type supported by COM Automation Feature.
Remarks	
This function returns a 0	
when successful, or a nonzero value of HRESULT	
when an error occurs.	
Code Sample	
This API initializes the parameter set passed to an Invoke	
call.	
Syntax	
Remarks	
The InitArg	
call initializes the parameter set. After InitArg	
has been called, a SetArg	
call sets the first parameter to the specified value. A second SetArg	
call sets the second parameter in the parameter list. Subsequent calls set the nth parameters in the parameter list, where n is the number of times SetArg	
has been called after an InitArg	
call. Another call to InitArg	
resets the argument list and a call to SetArg	
sets the first parameter again.	
Code Sample	
See "Invoke" for sample code.	
InitOutArg	
must be called after a COM method is invoked in preparation for getting the values of OUT	
and IN	
OUT	
parameters using GetArg	
. After calling InitOutArg	
, the first call to GetArg	
gets the value for the first OUT	
or IN	
OUT	
parameter, the second call to GetArg	
gets the value for the second OUT	
or IN	
OUT	
parameters, and so on. Calling InitOutArg	
again restarts this process.	
Syntax	
Remarks	
See the section on SetArg	
data type strings in "SetArg" for information about IN	
and OUT	
parameters.	
Code Sample	
See "Invoke" for sample code.	
Gets the argument of OUT	
and IN	
OUT	
parameters after the COM method has been invoked.	
Syntax	
Where	Is
---	---
data	the value of the OUT or IN OUT parameter after the COM method has been invoked.
type	the COM Automation data type of the parameter.
The available data types are:	
any_PL/SQL_data type	any data type supported by COM Automation Feature.
Remarks	
See the section on SetArg	
data type strings in "SetArg" for information about IN	
and OUT	
parameters.	
Code Sample	
See "Invoke" for sample code.	
Used to construct the parameter list for the next Invoke	
call.	
SetArg	
sets a parameter's value to be passed by value.	
Syntax	
Where	Is
---	---
paramvalue	the value of the parameter to be passed to an Invoke call. The parameter set is the nth parameter in the parameter list, where n is the number of times SetArg has been called after an InitArg call.
data type	the explicitly specified data type for the parameters. Those data types prefaced by an initial
Those data types without the initial p are IN parameters. The available data types are:	
any_PL/SQL_data type	any data type supported by COM Automation Feature.
Remarks	
Each SetArg	
procedure sets the nth parameter value. The InitArg	
call initializes the parameter set. After InitArg	
has been called, a SetArg	
call sets the first parameter to the specified value. A second SetArg	
call sets the second parameter in the parameter list. Subsequent calls set the nth parameters in the parameter list, where n is the number of times SetArg	
has been called after an InitArg	
call. Another call to InitArg	
resets the argument list and a call to SetArg	
sets the first parameter again.	
Data types without the initial p are IN	
parameters. Those data types prefaced by an initial p are IN	
OUT	
or OUT	
parameters.	
Code Sample	
See "Invoke" for sample code.	
This API calls a method of a COM Automation object. This function uses the parameter list, previously created by the calls to InitArg	
and SetArg	
as input for the COM Automation method.	
Syntax	
Where	Is
---	---
objecttoken	the object token of a COM Automation object previously created by CreateObject .
methodname	the method name of the COM Automation object to call.
argcount	the number of arguments passed to the COM Automation object method.
returnvalue	the return value of the method of the COM Automation object. If specified, it must be a local variable of the appropriate data type.
any_PL/SQL_data type	any data type supported by COM Automation Feature.
Remarks	
If the return value of the function is a COM object, then the developer must specify a local variable of data type BINARY_INTEGER	
for the returnvalue	
parameter. An object token is stored in the local variable, and this object token can be used with other Oracle COM Automation Feature APIs.	
This function returns 0	
when successful, or a nonzero value of HRESULT	
when an error occurs.	
Code Sample	
This section describes the Java APIs for manipulating COM objects using the COM Automation interface. These APIs are found in the Automation	
and Currency	
Java classes.	
The Automation	
Java class provides access to COM objects that support COM Automation. With this Java class, you can create a COM object and obtain a pointer to the IDispatch	
interface for the COM object. You can then get and set properties on the COM object, as well as invoke methods (with or without arguments) on the COM object. This class provides a wrapper for the COM object, so there is no direct access to the COM object or to its IDispatch	
interface.	
The Currency	
Java class represents the CURRENCY COM Automation data type. CURRENCY is a an 8-byte number where the last four digits represent the fractional part of the value. For example, the number 12345 actually represents the value 1.2345. CURRENCY has a range of (+/-)922337203685477.5807.	
COM Object Reference Counting	
COM object interface reference counting is handled internally, and IUnknown::AddRef(
) and IUnknown::Release()	
are not exposed. The user cannot explicitly address COM object interfaces. The lifetime of a particular COM object starts when the associated Java constructor or Create method is invoked, and it is released when the associated Destroy method is invoked.	
Constructors and Destructors	
Because the default constructor does not create a COM object, there are two approaches to creating a COM object:	
Create	
method you use depends on whether you want to specify the server name. Later, you must call the Destroy method to free the COM object. The Create	
method can be called at any time, but if a COM object was previously created through one of the nondefault constructors or the Create	
method, then you must first call the Destroy	
method.	
Handling COM Object Errors	
All COM errors are mapped to Java exceptions. Users can catch COM object errors through the Java exception handling mechanism.	
Note: Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can usedllhost to support in-process servers.	
This API creates a COM object.	
Syntax	
Remarks	
The default constructor public Automation()	
does nothing. It is used with a Create method.	
Using a constructor that takes only the progID	
parameter forces Oracle COM Automation Feature to check the registry for the location of the COM object. Registry information indicates whether the COM object is local or remote.	
COM Automation objects created using the nondefault constructors are freed with a corresponding call to Destroy. This nullifies the internal representation of the objects in Oracle COM Automation Feature and releases all interfaces associated with the objects.	
Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can use dllhost	
to support in-process servers.	
The COMException	
exception is thrown if an error occurs.	
Code Sample	
The following code sample demonstrates the nondefault constructors.	
This API instantiates a COM object in a COM Automation server.	
Syntax	
Where	Is
---	---
progID	the programmatic identifier (progID) of the COM Automation object to create. This character string describes the class of the COM Automation object and has the following form:
serverName	the name of the remote DCOM server on which the COM object is being instantiated.
Passing a specified name forces Oracle COM Automation Feature to attempt to instantiate the COM object on a remote computer.	
Remarks	
The COM Automation object created with the Create	
method is freed with a corresponding call to Destroy	
. This nullifies the internal representation of the object in Oracle COM Automation Feature and releases all interfaces associated with the object.	
Using the constructor that takes only the progID	
parameter forces Oracle COM Automation Feature to check the registry for the location of the COM object. Registry information indicates whether the COM object is local or remote.	
Oracle COM Automation Feature for Java does not allow in-process COM Automation servers. Developers can use dllhost	
to support in-process servers.	
The COMException	
exception is thrown if an error occurs.	
Code Sample	
This API destroys a created COM Automation object.	
Syntax	
Remarks	
Calling Destroy	
nullifies the internal representation of the object in the Oracle COM Automation Feature and releases all interfaces associated with the object.	
Code Sample	
See "Create" for code sample.	
This API gets a property value of a COM Automation object.	
Syntax	
Where	Is
---	---
propName	the property name of the COM object to return
propVal	the returned property value. The returned property type depends on the COM Automation type that is returned. The array must be big enough to hold at least one element although only the first element will be accessed to return the property.
allowed_type	from the following list:
Remarks	
If the property is a COM object, then it can be retrieved using the allowed_type	
of oracle.win.com.Automation	
. The Automation Java object that is returned can be used to get and set properties and call methods on the property.	
GetProperty	
uses an array parameter to return the property value to overload the GetProperty	
method. Overloading would not be possible if the property value were returned as a return value. The array solves the problem caused by Java not having an out parameter.	
The property is still returned as a return value for convenience.	
The COMException exception	
is thrown if an error occurs.	
Code Sample	
This API sets a property of a COM Automation object to a new value.	
Syntax	
Where	Is
---	---
propName	the property name of the COM object being set to a new value
propVal	the new value of the property. It must be a value of the appropriate data type.
allowed_type	from the following list:
Remarks	
If the property is a COM object, it can be set using the allowed type of oracle.win.com.Automation	
. The property value must be a valid Automation Java object.	
The COMException exception	
is thrown if an error occurs.	
Code Sample	
See "GetProperty" for sample code.	
This API initializes the parameter set passed to an Invoke	
call.	
Syntax	
Remarks	
The InitArg	
call initializes the parameter set and must be called even if the COM method does not take any parameters. After InitArg	
has been called, a SetArg	
call sets the first parameter to the specified value. A second SetArg	
call sets the second parameter in the parameter list. Subsequent calls set the nth parameters in the parameter list, where n is the number of times SetArg	
has been called after an InitArg	
call. Another call to InitArg	
resets the argument list and a call to SetArg	
sets the first parameter again.	
Code Sample	
See "Invoke" for sample code.	
This API is used to construct the parameter list for the next Invoke	
call.	
Syntax	
Where	Is
---	---
val	the value of the parameter to be passed to an Invoke call. The parameter set is the nth parameter in the parameter list, where n is the number of times SetArg has been called after an InitArg call.
allowed_type	from the following list.
Remarks	
If a parameter is a COM object, then the allowed_type	
of the corresponding argument should be oracle.win.com.Automation	
. The argument should be a valid Automation Java object.	
No exceptions are thrown at this time. However, if an error occurs, for example, if the wrong argument type is passed, then it will be caught when the Invoke	
method is called.	
Code Sample	
See "Invoke" for sample code.	
Calls a method of a COM Automation object. This function uses the parameter list, previously created by the calls to InitArg	
and SetArg	
, as input for the COM Automation method.	
Syntax	
Where	Is
---	---
methodName	the method name of the COM Automation object to call
retVal	the return value of the method of the COM Automation object. If specified, then it must be a local variable of the appropriate data type. The array must be big enough to hold at least one element, although only the first element will be accessed to return the property.
allowed_type	a type from the following list:
Remarks	
If the COM method returns a COM object as the return value, then the allowed_type	
of the return value is oracle.win.com.Automation	
. The Automation Java object that is returned can be used to get and set properties, and call methods on the return value.	
To overload the Invoke	
method,	
Invoke	
uses an array parameter to return the values of COM object methods. Overloading would not be possible if the property value was returned as a return value. The array solves the problem caused by Java not having an out parameter.	
The version of Invoke	
that takes only one parameter, public void Invoke(String methodName)	
, is used for COM object methods with void	
return types.	
The property is still returned as a return value for convenience.	
The COMException exception	
is thrown if an error occurs.	
Code Sample	
This API creates a currency	
Java object.	
Syntax	
Where	Is
---	---
value	the 8-byte CURRENCY number
This API gets the 8-byte CURRENCY	
number.	
Syntax	
Remarks	
Returns the 8-byte CURRENCY	
number.	
This API sets the 8-byte CURRENCY	
number.	
Syntax	
Where	Is
---	---
value	the 8-byte CURRENCY number
This chapter describes how to use Oracle COM Automation Feature demonstration programs for PL/SQL.	
This chapter contains these topics:	
Oracle COM Automation Feature for PL/SQL includes examples that demonstrate how to use the feature to build solutions. These demos provide base functionality and can serve as a foundation on which to build more customized, complex applications that use COM Automation. The demos are based on the human resources schema available with the sample schema.	
Each demo exposes a core set of APIs that enables you to do simple operations using COM Automation. Each COM Automation server, such as Word and Excel, provides more advanced capabilities than what is offered through the demo APIs. To take advantage of these advanced features, you must design and code your own PL/SQL procedures.	
In this release, COM Automation has provided the following demos:	
The following sections describe how to install the Microsoft Word demo and the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle Database and Microsoft Word.	
The demo creates a Microsoft Word document containing the names of employees in the database.	
The Microsoft Word demo provides the following:	
ORDWord	
, a PL/SQL package that exposes several APIs for manipulating Microsoft Word. This package is created by the wordsol.sql	
script. worddem.sql	
, a script that displays the capabilities of exchanging data between Oracle Database and Microsoft Word. It exchanges data from the EMPLOYEES	
and JOBS	
tables to a Microsoft Word document. These tables are available in the human resources schema in the sample schema. Microsoft Word must be installed on the local computer before you install this demo.	
To install Microsoft Word demos:	
wordsol.sql	
script at the SQL*Plus prompt: This script creates the ORDWord	
package in the current user's schema. You will receive the following error several times when you run this script for the first time:	
These messages are normal.	
To use the Microsoft Word demo:	
worddem.sql	
script at the SQL*Plus prompt: This script creates a Microsoft Word document (worddemo.doc	
) in the C:\	
directory. The document contains data from the EMPLOYEES	
and JOBS	
tables. These tables are available in the human resources schema in the sample schema.	
worddemo.doc	
file to see its contents. The following subsections describe the APIs that the Microsoft Word demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft Word exposes through COM Automation.	
This API instantiates a Word.Basic	
object in the Microsoft Word Automation server.	
Syntax	
Remarks	
This function must be called before any other operation can be performed. This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API creates a new Microsoft Word document.	
Syntax	
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API loads a document into Microsoft Word.	
Syntax	
Where	Is
---	---
filename	the fully qualified filename of the document.
Remarks	
This function returns a 0	
when successful or a nonzero HRESULT	
when an error occurs.	
This API saves the current Microsoft Word document to disk.	
Syntax	
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API saves the current Microsoft Word document as a specific file.	
Syntax	
Where	Is
---	---
filename	the fully qualified filename of the document.
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API closes the current Microsoft Word document.	
Syntax	
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API inserts a text string into the current Microsoft Word document.	
Syntax	
Where	Is
---	---
textstr	the text that will be inserted into the document.
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API inserts a new line into the current Microsoft Word document.	
Syntax	
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API sets the font size for the current Microsoft Word document.	
Syntax	
Where	Is
---	---
fontsize	the point size of the font.
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
The following sections detail how to install the Microsoft Excel demo and describe the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle and Microsoft Excel.	
The Microsoft Excel demo provides the following:	
ORDExcel	
, a PL/SQL package that exposes several APIs for manipulating Microsoft Excel. This package is created by the excelsol.sql	
script. exceldem.sql	
, a script that displays the capabilities of exchanging data between Oracle database instance and Microsoft Excel. It exchanges data from the EMPLOYEES	
and JOBS	
tables in Oracle database instance to a Microsoft Excel spreadsheet and puts it in a graph. These tables are available in the human resources schema in the sample schema. Microsoft Excel must be installed on the local computer before you install this demo.	
To install the Microsoft Excel demo:	
excelsol.sql	
script at the SQL*Plus prompt: This script creates the ORDExcel	
package in the schema of the current user. You will receive the following error several times when you run this script for the first time:	
These messages are normal.	
To use the Microsoft Excel demo:	
exceldem.sql	
script at the SQL*Plus prompt: This script creates a Microsoft Excel spreadsheet (excel	
xxxxx	
.xls	
) in the C:\	
directory. The document contains data from the EMPLOYEES	
and JOBS	
tables. These tables are available in the human resources schema in the sample schema.	
excel	
xxxxx	
.xls	
file, where xxxxx	
is a time stamp, to see the content of this file. The following subsections describe the APIs that the Microsoft Excel demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft Excel exposes through COM Automation.	
This API starts the Microsoft Excel COM Automation server and instantiates the objects for a workbook and a worksheet.	
Syntax	
Remarks	
This function returns 0	
when successful, or a nonzero value for HRESULT	
when an error occurs.	
This API inserts any kind of data into a specific cell of the current Excel worksheet.	
Syntax	
Where	Is
---	---
range	a string that indicates a specific cell in the current Excel worksheet (for example, 'A1', 'B1').
data	the data that you want to insert into the current Excel worksheet.
data type	a string that indicates the data type of the data that you are inserting into Excel. The list of available data types are:
any_PL/SQL_data type | any data type supported by COM Automation Feature. |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API creates a chart of a specified range of data and inserts the chart at the x and y position of the current worksheet with the desired height and width.
Syntax
Where | Is |
---|---|
xpos | the x position in the current worksheet where the chart should be inserted |
ypos | the y position in the current worksheet where the chart should be inserted |
width | the width of the chart |
height | the height of the chart |
range | the range of cells to be graphed |
type | the data type of the data to be graphed |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API saves the current Microsoft Excel workbook as a specific file.
Syntax
Where | Is |
---|---|
filename | the fully qualified file name of the Excel workbook |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
Performs some cleanup and destroys the outstanding references to the Excel COM Automation server. This should be the last API called.
Syntax
Remarks
This function returns a 0
when successful or a nonzero HRESULT
when an error occurs.
The following sections detail how to install the Microsoft PowerPoint demo and describe the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle Database instance and Microsoft PowerPoint.
The Microsoft PowerPoint demo provides the following:
ORDPPT
, a PL/SQL package that exposes several APIs for manipulating Microsoft PowerPoint. This package is created by the pptsol.sql
script. pptdem.sql
, a script that displays the capabilities of exchanging data between Oracle Database instance and Microsoft PowerPoint. It exchanges data from the EMPLOYEES
and JOBS
tables in Oracle Database instance to a Microsoft PowerPoint document. These tables are available in the human resources schema in the sample schema. Microsoft PowerPoint must be installed on the local computer before installing this demo.
To install the Microsoft PowerPoint demo:
pptsol.sql
script at the SQL*Plus prompt: This script creates the ORDPPT
package in the current user's schema. You will receive the following error several times when you run this script for the first time:
These messages are normal.
To run the Microsoft PowerPoint demo:
pptdem.sql
script at the SQL*Plus prompt: This script creates a Microsoft PowerPoint presentation (pptdemo.ppt
) on C:\
. The document contains a list of employee names.
pptdemo.ppt
to see its contents. The following subsections describe the APIs that the Microsoft PowerPoint demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft PowerPoint exposes through COM Automation.
This API starts the Microsoft PowerPoint COM Automation server and instantiates the objects for a presentation.
Syntax
Where | Is |
---|---|
servername | Microsoft Powerpoint COM Automation Server name |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API inserts a new slide in the PowerPoint presentation.
Syntax
Where | Is |
---|---|
layout | the layout of the new slide |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API specifies the title of the PowerPoint slide.
Syntax
Where | Is |
---|---|
title | Powerpoint slide title |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API inserts text into the specified location on the slide.
Syntax
Where | Is |
---|---|
orientation | orientation of the text box |
left | distance between the left edge of the text box and the left edge of the slide in pixels |
top | distance between the top edge of the text box and the top edge of the slide in pixels |
width | width of the text box in pixels |
height | height of the text box in pixels |
text | text entered in the text box |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API saves the current PowerPoint presentation.
Syntax
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API saves the current presentation using the specified name.
Syntax
Where | Is |
---|---|
filename | the fully qualified filename of the presentation. |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API closes the current PowerPoint presentation.
Syntax
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API exits the PowerPoint program.
Syntax
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
The following sections detail how to install the messaging application programming interface (MAPI) demo and describe the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with an Oracle Database instance and MAPI-compliant applications.
The MAPI demo provides the following:
ORDMAPI
, a PL/SQL package that exposes several APIs for manipulating the Extended MAPI client. mapidem.sql
, a script that displays the capabilities of exchanging data between Oracle Database instance and the Extended MAPI client. mapi.reg
, a registration entry file that updates the registry settings. You must set up certain related applications to use the MAPI demo.
Note: The following setup requires Microsoft Outlook 2000 or later. Outlook Express will not work. |
To set up the environment for the MAPI demo:
Select Start, Programs, Microsoft Exchange, and then Active Directory Users and Computers.
Select your domain and expand the folders. Select users and right-click to create a new user.
Select Custom Install. Select Collaboration Data Objects.
Note: During the installation, these are not installed by default. |
Select the Corporate or Workgroup option.
Add the account that you created on Exchange Server.
Enter your incoming and outgoing mail servers, and enter the account name and password.
Select the connection type (for example, LAN).
From Internet Explorer, choose Tools, Internet Options, Programs and set the fields.
CDO.DLL
as mentioned in the MSDN article, 268272. This patched DLL is part of Microsoft Exchange 5.5. Manually copy the patched DLL to the proper location. The default location for this DLL is: MAPI.REG
from the Windows Explorer. MAPI.REG
is located in: The MAPI Solution invokes Extended MAPI client on behalf of the Oracle Database server. The Oracle Database service on Windows 2000 and higher, by default, runs as the system user LocalSystem
. The MAPI profile for user LocalSystem
is not easily configured. Before using the MAPI Solution, change both the Oracle Database service and Oracle
HOME_NAME
TNSListener
service to start up using a login user account.
To prepare to install the MAPI demo:
DOMAIN-1\hr
. DOMAIN-1\hr
. Ensure that you can send out e-mail using this profile. Oracle
HOME_NAMETNS
Listener
service. Oracle
HOME_NAMETNS
Listener
service and click Startup. DOMAIN-1\hr
. DOMAIN-1\hr
. Oracle
HOME_NAMETNS
Listener
service. DOMAIN-1\hr
. DOMAIN-1\hr
. The MAPI application, such as Microsoft Outlook 2000 or later, must be installed on the local computer before you install this demo.
To install the MAPI demo:
mapisol.sql
script at the SQL*Plus prompt: This script creates the ORDMAPI
package in the current user's schema. You will receive the following error several times when you run this script for the first time:
These messages are normal.
To use the MAPI demo:
mapidem.sql
with a text editor and change the e-mail address hr@us.oracle.com
in ORDMapi.AddRecipient
to your own e-mail address. If you are not using the default as your profile name, also change the profile name that is indicated in ORDMapi.CreateMAPISession
, MS
Exchange
Settings
. Save the changes. mapidem.sql
script at the SQL*Plus prompt: This script connects to a database server, extracts the data, and sends an e-mail to a specified recipient.
The following subsections describe the APIs that the MAPI demo exposes. These APIs are primitive and do not expose all the functionalities that MAPI exposes through COM Automation.
This API starts the MAPI COM Automation server and instantiates the objects for a session.
Syntax
Where | Is |
---|---|
servername | MAPI server name |
profilename | name of the profile present in the MAPI server |
password | password to connect to the MAPI server |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API creates a new message.
Syntax
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API adds the e-mail address of a recipient. This is the address where the e-mail message will be sent.
Syntax
Where | Is |
---|---|
emailaddress | e-mail address of the recipient |
Remarks
This function returns a 0
when successful or a nonzero HRESULT
when an error occurs.
This API specifies the subject of the e-mail message.
Syntax
Where | Is |
---|---|
subject | the subject of the e-mail message |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API inserts the body text of the e-mail message.
Syntax
Where | Is |
---|---|
messagetext | the body of the e-mail message |
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API sends the e-mail message to the specified recipients.
Syntax
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This API exits the MAPI session.
Syntax
Remarks
This function returns 0
when successful, or a nonzero value for HRESULT
when an error occurs.
This chapter describes how to use the demonstration program designed for Oracle COM Automation Feature for Java.
This chapter contains these topics:
Oracle COM Automation Feature for Java includes an example that demonstrates how to use the feature to build solutions. The demo provides base functionality and can serve as a foundation on which to build more customized, complex applications that use COM Automation. This demo is based on the human resources schema available with the sample schema.
The demo exposes a core set of APIs that enable you to do simple operations using Oracle COM Automation Feature. Each COM Automation server, such as Word and Excel, provides more advanced capabilities than what is offered through the demo APIs. To take advantage of these advanced features, you must design and code your own Java classes.
In this release, COM Automation has provided the Microsoft Word Java Demo, which exchanges data between an Oracle Database instance and Microsoft Word.
The following sections describe how to install the Microsoft Word Java demo and the APIs that it exposes. This demo is provided as an example of the types of solutions that can be built with Oracle Database and Microsoft Word.
The demo creates a Microsoft Word document containing the names of employees in the database.
The Microsoft Word Java demo is installed in the ORACLE_BASE\ORACLE_HOME
\com\java\demos
directory and provides the following:
TestWORD.java
, the Java source for the demo. In addition to the collection of APIs, it includes the demo program test
. TestWORD.class
, the Java class for the demo. TestWORD.sql
, the script that creates the call specification for the demo. Microsoft Word must be installed on the local computer before you install this demo.
To install the demo:
loadjava
tool from the command line: TestWORD.sql
script to create the call specification: To use the Word demo:
SERVEROUTPUT
on at the SQL*Plus prompt: TestWORD()
at the SQL*Plus prompt: This creates a Microsoft Word document (worddemoj.doc
) in the C:\
directory. The document contains data from the EMPLOYEES
and JOBS
tables. These tables are available in the human resources schema in the sample schema.
worddemoj.doc
to see its contents. The public class TestWORD
API as described in "Core Functionality" , provides a wrapper around the Word.Basic
COM Automation class as well as some sample code that demonstrates how to use the wrapper. This code was written to be run on the Oracle database server.
To create a custom application that uses this wrapper:
Word.Basic
object by calling the CreateWordObject
method. FileNew
method, or open an existing document with the FileLoad
method. FormatFontSize
, InsertText
, and InsertNewLine
methods to add text and formatting to the document. FileSaveAs
or the FileSave
method. FileClose
method when you are finished with the document. DestroyWordObject
method when you are finished with the Word.Basic
object. The following subsections describe the APIs that the Microsoft Word Java demo exposes. These APIs are primitive and do not expose all the functionalities that Microsoft Word exposes through COM Automation.
This API is the constructor. It does nothing.
Syntax
Creates the Word.Basic
COM object.
Syntax
Where | Is |
---|---|
servername | the server on which to create the COM object. Specify null or the empty string for the local server. |
This API destroys the Word.Basic
COM object.
Syntax
This API creates a new Microsoft WORD document.
Syntax
Remarks
This API is a wrapper for the FileNewDefault
COM method of the Word.Basic
COM object.
This API loads an existing Microsoft WORD document.
Syntax
Where | Is |
---|---|
filename | the name of the file to load. |
Remarks
This API is a wrapper for the FileOpen
COM method of the Word.Basic
COM object.
This API sets the font size.
Syntax
Where | Is |
---|---|
fontsize | the new font size. |
Remarks
This API is a wrapper for the FormatFont
COM method of the Word.Basic
COM object.
This API inserts text into the Microsoft Word document.
Syntax
Where | Is |
---|---|
textstr | the text to insert. |
Remarks
This API is a wrapper for the Insert
COM method of the Word.Basic
COM object.
This API inserts a new line into the Microsoft Word document.
Syntax
Remarks
This API is a wrapper for the InsertPara
COM method of the Word.Basic
COM object.
This API saves the Microsoft Word document using a specified name.
Syntax
Where | Is |
---|---|
filename | the name of the file. |
Remarks
This API is a wrapper for the FileSaveAs
COM method of the Word.Basic
COM object.
This API saves the Microsoft Word document.
Syntax
Remarks
This API is a wrapper for the FileSave
COM method of the Word.Basic
COM object.
This API closes the Microsoft Word document, and exits Microsoft Word.
Syntax
Remarks
This API is a wrapper for the FileClose
and FileExit
COM methods of the Word.Basic
COM object.
This appendix contains these topics:
The following is a list of Oracle COM Automation Feature PL/SQL errors and their common causes.
CreateObject
, or the COM object was freed using DestroyObject
.CreateObject
as well as COM objects obtained as property values and return values.ProgID
is located in the registry, but the CLSID associated with the ProgID
is not correct.ProgID
is registered.ProgID
is not located in the registry. An attempt was made to create the ProgID
and assign a CLSID
to it, but the registry could not be modified.IDispatch
interface, so it cannot support COM Automation.pexcepinfo
should be filled in GetLastError
to get this additional informationInvoke
tried to set the value of a read-only property.ProgID
is too long.The following is a list of Microsoft COM Automation errors and their common causes. Both the hexadecimal and binary error codes are listed.
ProgID
or CLSID
is not registered as a COM object in the registry of the local computer.NULL
value was passed as a method parameter.NULL
.Component Object Model (COM)
A binary standard that enables objects to interact with other objects, regardless of the programming language that each object was written in
Distributed Component Object Model (DCOM)
An extension of COM that enables objects to interact with other objects across a network
dynamic-link library (DLL)
An executable file that a Windows application can load when needed
external procedure
A function written in a third-generation language (3GL), such as C, and callable from within PL/SQL or SQL as if it were a PL/SQL function or procedure
GUID
An identifier that uniquely identifies a COM object. GUID is an acronym for Globally Unique Identifier
IID
A GUID that identifies a COM interface
listener
The server process that listens for and accepts incoming connection requests from client applications. Oracle listener processes start up Oracle Database processes to handle subsequent communications with the client
listener.ora
A configuration file that describes one or more Transparent Network Substrate (TNS) listeners on a server
messaging application programming interface (MAPI)
A messaging architecture composed of a set of common application programming interfaces that enables multiple applications to interact with multiple messaging systems across a variety of hardware platforms
Optimal Flexible Architecture (OFA)
A set of file naming and placement guidelines for Oracle software and databases
Oracle COM Automation Feature
An Oracle feature that enables PL/SQL developers to programmatically manipulate COM objects through the IDispatch
COM Automation interface
Oracle Net
The Oracle client/server communication software that offers transparent operation to Oracle tools or databases over any type of network protocol and operating system
PL/SQL
Oracle's procedural language extension to SQL
progID
A descriptive string that maps to a GUID
tnsnames.ora
A file that contains connect descriptors mapped to net service names. The file may be maintained centrally or locally, for use by all or individual clients
 Copyright © 1999, 2011, Oracle and/or its affiliates. All rights reserved. |