Supplement to the Oracle Precompilers Guide
11g Release 2 (11.2)
E10829-01
July 2009
Pro*PL/1 Supplement to the Oracle Precompilers Guide, 11g Release 2 (11.2)
E10829-01
Copyright © 1994, 2009, Oracle and/or its affiliates. All rights reserved.
Primary Author: Simon Watt
Contributing Author: Shiladitya Guha
Contributor: Subhranshu Banerjee, Fred Zemke
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Devoted exclusively to the Pro*PL/1 Precompiler, this manual supplements the language-independent Oracle Database Programmer's Guide to the Oracle Precompilers. An understanding of the material in the Programmer's Guide is assumed.
This companion book guides you in writing PL/1 programs that use the powerful database language, SQL, to access and manipulate Oracle data. It provides easy-to-follow examples, instructions, and programming tips, and several full-length programs to aid your understanding of embedded SQL and demonstrate its usefulness.
This Preface contains these topics:
The Pro*PL/1 Supplement to the Oracle Precompilers Guide is intended for developers who are either writing new PL/1 applications or converting existing PL/1 applications to run in the Oracle environment. Though written specially for programmers, it will also be of value to systems analysts, project managers, and other Oracle users who are interested in embedded SQL applications.
To use this document, you need familiarity with the following:
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html
, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html
.
This document contains the following chapters and appendixes:
Chapter 1, "Writing a Pro*PL/1 Program"
This chapter provides the basic information required for writing a Pro*PL/1 program. You learn programming guidelines, coding conventions, language-specific features and restrictions, and how to equivalence the datatypes.
Chapter 2, "Error Handling and Diagnostics"
This chapter discusses error reporting and recovery. It shows you how to use the SQLCA and the WHENEVER statement to detect errors and status changes. It also shows you how to use the ORACA to diagnose problems.
Chapter 3, "Running the Pro*PL/1 Precompiler"
This chapter details the requirements for running the Pro*PL/1 Precompiler. You learn how to issue the precompiler command, how to specify useful precompiler options, and when to do separate and conditional precompilations.
This chapter provides several embedded SQL programs to guide you in writing your own. These well-commented programs illustrate the key concepts and features of Pro*PL/1 programming.
Chapter 5, "Implementing Dynamic SQL Method 4"
This chapter shows you how to implement dynamic SQL Method 4, an advanced programming technique that lets you write highly flexible applications. Numerous examples, including a full-length sample program, are used to illustrate the method.
Appendix A, "Differences from Previous Release"
This appendix lists differences between Pro*PL/1 precompiler release 1.5 and 1.6.
Appendix B, "Operating System Dependencies"
Some details of Pro*PL/1 programming vary from system to system. So, occasionally, you are referred to other manuals. For convenience, this appendix collects all external references to system-specific information.
For more information, see these Oracle resources:
Occasionally, this manual refers you to other Oracle manuals for system-specific information. Typically, these manuals are called installation or user's guides, but their exact names vary depending on operating system and platform. For convenience, Appendix B collects all external references to system-specific information.
Many of the examples in the documentation library use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
http://otn.oracle.com/membership/
If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at
http://otn.oracle.com/documentation/
Important terms being defined for the first time are italicized. In discussions, uppercase is used for database objects and SQL keywords, and boldface uppercase is used for the names of PL/1 functions and procedures. All PL/1 code is in uppercase.
The following notational conventions are used in code examples:
Convention	Meaning
< >	Angle brackets enclose the name of a syntactic element.
[]	Brackets indicate that the enclosed items are optional.
{ }	Braces indicate that one, and only one, of the enclosed items is required.
	A vertical bar separates options within brackets or braces.
... | An ellipsis indicates that the preceding argument or parameter can be repeated, or that statements or clauses irrelevant to the discussion were left out. |
The Version 1.6 Pro*PL/1 Precompiler complies completely with the following standards:
Compliance with these standards has been tested and validated using the appropriate National Institute of Standards and Technology (NIST) test suites.
ANSI compliance is governed by the MODE option. For more information about ANSI compliance and the MODE option, see the Oracle Database Programmer's Guide to the Oracle Precompilers
The script content on this page is for navigation purposes only and does not alter the content in any way.
This chapter provides the basic information you need to develop a Pro*PL/1 application. You learn the following:
The following sections (arranged alphabetically for quick reference) deal with coding conventions, embedded SQL syntax, and other features that are specific to host PL/1 programs.
You can place PL/1 comments (/* ... */) in a SQL statement wherever blanks can be placed (except between the keywords EXEC SQL and within quoted literals). You can also place ANSI SQL-style comments (-- ...) in SQL statements at the end of a line if the statement continues over multiple lines. However, you cannot place an ANSI SQL-style comment at the end of the last line, following the semicolon that terminates the SQL statement. The following example shows both comment styles:
You cannot nest comments.
You can continue SQL statements from one line to the next, even in the middle of a quoted string literal. For example, the following statement inserts the string value 'PURCHASING' into the DNAME column:
EXEC SQL INSERT INTO dept (deptno, dname) VALUES (50, 'PURCHASING');
When using SQL commands in your host program, you precede the SQL command with the EXEC SQL clause. The Oracle Database PL/SQL Language Reference describes embedded SQL syntax. The precompiler translates all EXEC SQL statements into calls to the run-time library SQLLIB.
Host variable names must consist only of letters and digits, and must begin with a letter. They can be any length, but only the first 31 characters are significant. The PL/1 compiler normally converts variable names to upper case. Check your compiler documentation for the rules for forming PL/1 identifiers on your system.
The MAXLITERAL precompiler option lets you specify the maximum length of string literals generated by the precompiler, so that compiler limits are not exceeded. The MAXLITERAL default value is 256 for Pro*PL/1. However, you might have to specify a lower value if your PL/1 compiler cannot handle string literals of that length.
In SQL, a NULL column "value" is simply one that is missing, unknown, or inapplicable; it equates neither to zero nor to a blank. Therefore, use either the NVL function, the IS [NOT] NULL operator, or indicator variables when selecting or testing for nulls, and use indicator variables to insert nulls.
In PL/1, the built-in function NULL() simply returns a null pointer value; it is not related to the SQL NULL value in any way.
The logical operators are different in SQL and PL/1, as listed in the following table.
SQL Operator | PL/1 Operator |
---|---|
NOT | ^ (prefix) |
AND | & |
OR | |&: |: ^ (infix) |
PL/1 logical operators are not allowed in SQL statements.
The relational operators are similar in SQL and PL/1, as the following table shows:
SQL Operator | PL/1 Operator |
---|---|
= | = |
<>, !=, ^= | ^= |
> | > |
< | < |
>= | >= |
<= | <=^<^> |
The Pro*PL/1 Precompiler supports the standard implementation of PL/1 for your operating system. See the Oracle Database Installation Guide specific to your operating system for more information.
The Pro*PL/1 Precompiler does not support PL/1 preprocessor directives. Do not use preprocessor directives, even %INCLUDE, within EXEC SQL blocks. You can, of course, use whatever PL/1 preprocessor facilities your compiler makes available in pure PL/1 code. Code included by a PL/1 preprocessor is not precompiled.
In SQL, quotation marks are used to delimit identifiers containing special or lowercase characters, as in
Both SQL and PL/1 use apostrophes to delimit strings, as in the PL/1 statements
or the SQL statement
Host variables used in embedded SQL statements follow the normal scoping rules of PL/1. Any host variable that you want to use in an embedded SQL statement must also be accessible to PL/1 statements in the same block.
End all embedded SQL statements with a semicolon, as shown in the following examples:
This section describes the variable declarations and SQL statements that must be present in every Pro*PL/1 source file.
You must declare all variables that will be used in embedded SQL statements inside a SQL Declare Section, and the Declare Section must physically precede the embedded SQL statements that use the declared host variables. This section can be placed outside a procedure block or within a procedure block or a begin block. Each block that contains a SQL statement must have a Declare Section in scope, even if the statement does not contain host variables. In this case, the Declare Section is empty. A common solution is to place a Declare Section near the start of the main procedure block. The following example shows a SQL Declare Section in which two host variables are declared.
The only statements that are allowed in a Declare Section are
A Pro*PL/1 source file can have multiple Declare Sections.
You must declare PL/1 variables that are to be used as host variables inside a SQL Declare Section. You should not declare PL/1 variables that are not to be used as host variables in a SQL Declare Section. Always use the standard PL/1 declaration syntax to declare variables.
The INCLUDE statement lets you copy files into your host program, as the following example shows:
You can INCLUDE any file. When you precompile your Pro*PL/1 program, each EXEC SQL INCLUDE statement is replaced by a copy of the file named in the statement.
If your system uses file extensions but you do not specify one, the Pro*PL/1 Precompiler assumes the default extension for source files (usually PLI). The default extension is system dependent. Check the Oracle Database Installation Guide specific to your operating system.
You can set a directory path for INCLUDEd files by specifying the precompiler option
where path defaults to the current directory. The precompiler searches first in the current directory, then in the directory specified by INCLUDE, and finally in a directory for standard INCLUDE files. So, you need not specify a directory path for standard files such as the SQLCA and ORACA. However, you must use INCLUDE to specify a directory path for nonstandard files unless they are stored in the current directory.
You can specify more than one path on the command line, as follows:
The precompiler searches first in the current directory, then in the directory named by PATH1, then in the directory named by PATH2, and finally in the directory for standard INCLUDE files.
The syntax for specifying a directory path is system specific. Check the Oracle Database Installation Guide specific to your operating system.
Caution: Remember, the precompiler searches for a file in the current directory first—even if you specify a directory path. So, if the file you want to INCLUDE resides in another directory, make sure no file with the same name resides in the current directory. |
Release 1.6 provides forward and backward compatibility for checking the outcome of executing SQL statements. The SQLCA data structure and SQLCODE status variable can be used in the same manner as in previous releases. The SQLSTATE status variable is introduced in release 1.6. There are restrictions on using SQLCA, SQLCODE, and SQLSTATE depending on how you set the MODE and DBMS options. For more information, see Chapter 2, "Error Handling and Diagnostics".
Host variables are the key to communication between your host program and Oracle. Typically, a host program inputs data to Oracle, and Oracle outputs data to the program. Oracle stores input data in database columns, and stores output data in program host variables.
You declare a host variable in the SQL Declare Section according to the rules of PL/1, specifying a PL/1 datatype supported by Oracle. The PL/1 datatype must be compatible with that of the host variable's source or target database column.
The following table describes the PL/1 datatypes you can specify in the Declare Section:
PL/1 Datatype | Description |
---|---|
CHARACTER (N) | string of length N |
CHARACTER (N) VARYING | string of maximum length N |
FIXED BINARY (15) | short signed integer |
FIXED BINARY (31) | signed integer |
FIXED DECIMAL (N) | decimal number of N digits |
FIXED DECIMAL (P,S) | decimal with precision and scale |
FLOAT BINARY (N) | floating point number |
FLOAT DECIMAL (N) | float of maximum length N |
You can also declare one-dimensional arrays of each of these types.
Note: Oracle supports only the PL/1 datatypes in the preceding table. |
You can declare structures in the SQL Declare Section, and can use individual structure elements as host variables. The elements of the structure must be of datatypes allowed in a Declare Section. You cannot reference the whole structure as a host variable. For example, if you have a structure containing three elements, you cannot SELECT three columns into the elements by referencing the top level of the structure. You must reference each element by name as a host variable.
You cannot use the LIKE attribute with structure declarations in the SQL Declare Section.
In the following example, you declare five host variables for use later in the Pro*PL/1 program:
Note: For simplicity in demonstrating this feature, this example does not perform the password management techniques that a deployed system normally uses. In a production environment, follow the Oracle Database password management guidelines, and disable any sample accounts. See Oracle Database Security Guide for password management guidelines and other security recommendations. |
You can use attribute factoring within a SQL Declare Section, as in
which is equivalent to
You must explicitly declare host variables in the Declare Section of the procedure block that uses them in SQL statements. Thus, variables passed to a subroutine or function and used in SQL statements within the routine must be declared in the Declare Section. An example follows:
A host variable must be prefixed with a colon (:) in SQL statements, but must not be prefixed with a colon in PL/1 statements, as the following example shows:
Though it might be confusing, you can give a host variable the same name as an Oracle table or column, as the previous example showed (SAL).
A host variable cannot substitute for a column, table, or other Oracle object in a SQL statement, and must not be an Oracle reserved word.
Table 1-1 Compatible Internal Datatypes
CHAR(X)Foot 1 VARCHAR2(Y)Footref 1 | CHARACTER (N) CHARACTER (N) VARYING FIXED BINARY (15) FIXED BINARY (31) FIXED DECIMAL (p,s) FIXED DECIMAL (N) FLOAT FLOAT DECIMAL (N) | string variable-length string small signed integer signed integer fixed-point number fixed-point number floating-point number floating-point number |
NUMBER NUMBER (P,S)Foot 2 | FIXED BINARY (15) FIXED BINARY (31) FIXED DECIMAL (p,s) FIXED DECIMAL (N) FLOAT FLOAT DECIMAL (N) CHARACTER (N) CHARACTER (N) VARYING | small signed integer signed integer fixed-point number fixed-point number floating-point number floating-point number stringFoot 3 variable-length string |
DATEFoot 5 MLSLABELFoot 6 | CHARACTER (N) CHARACTER (N) VARYING | string variable-length string |
Footnote 1 X ranges from 1 to 255. Y ranges from 1 to 2000. 1 is the default value.
Footnote 2 P ranges from 2 to 38. S ranges from -84 to 127.
Footnote 3 Strings can be converted to NUMBERs only if they contain convertible characters ('0' to '9', '.', '+', '-', 'E', 'e'). Note that the Globalization Support settings in effect on your system might change the decimal point from '.' to ','.
Footnote 4 When converted as a string type, the default size of a DATE depends on the Globalization Support settings in effect on your system. When converted as a binary type, the size is 7 bytes.
Footnote 5 When converted as a string type, a ROWID requires between 18 and 256 bytes. When converted as a binary value, the length is system dependent.
Footnote 6 Trusted Oracle database version 7 only.
You use indicator variables to provide information to Oracle about the status of a host variable, or to monitor the status of data that is returned from Oracle. An indicator variable is always associated with a host variable.
An indicator variable must be explicitly declared in the SQL Declare Section as a 2-byte signed integer (FIXED BINARY(15)) and must not be an Oracle reserved word. In the following example, you declare two indicator variables (the names SAL_IND and COMM_IND are arbitrary):
You can use indicator variables in the VALUES, INTO, and SET clauses. In SQL statements, an indicator variable must be prefixed with a colon and appended to its associated host variable. In PL/1 statements, an indicator variable must neither be prefixed with a colon nor appended to its associated host variable. An example follows:
To improve readability, you can precede any indicator variable with the optional keyword INDICATOR. You must still prefix the indicator variable with a colon. The correct syntax is
which is equivalent to
You can use both forms of expression in your host program.
Restriction
Indicator variables cannot be used in the WHERE clause to search for nulls. For example, the following DELETE statement triggers an Oracle error at run time:
The correct syntax follows:
Oracle Restrictions
When DBMS=V6, Oracle does not issue an error if you SELECT or FETCH a null into a host variable that is not associated with an indicator variable. However, when DBMS=V7, if you SELECT or FETCH a null into a host variable that has no indicator, Oracle issues the following error message:
ANSI Requirements
When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a host variable that is not associated with an indicator variable, Oracle issues the following error message:
However, when MODE={ANSI | ANSI14 | ANSI13}, no error is generated.
Host arrays can boost performance by letting you manipulate an entire collection of data items with a single SQL statement. With few exceptions, you can use host arrays wherever scalar host variables are allowed. And, you can associate an indicator array with any host array.
You declare and dimension host arrays in the Declare Section. In the following example, you declare three host arrays and dimension them with 50 elements:
Restrictions
You cannot specify a lower dimension bound for host arrays. For example, the following declarations are invalid:
Multidimensional host arrays are not allowed. Thus, the two-dimensional host array declared in the following example is invalid:
If you use multiple host arrays in a single SQL statement, their sizes should be the same. This is not a requirement, however, because the Pro*PL/1 Precompiler always uses the smallest array size for the SQL operation.
You do not need to process host arrays in a loop. Simply use the unsubscripted array names in your SQL statement. Oracle treats a SQL statement containing host arrays of dimension n like the same statement executed n times with n different scalar variables. For more information about using host arrays, see Chapter 8 of the Oracle Database Programmer's Guide to the Oracle Precompilers.
Using Indicator Arrays
You can use indicator arrays to assign nulls to input host arrays, and to detect nulls or truncated values in output host arrays. The following example shows how to INSERT using indicator arrays:
Oracle Restrictions
Mixing scalar host variables with host arrays in the VALUES, SET, INTO, or WHERE clause is not allowed. If any of the host variables is an array, all must be arrays.
Also, you cannot use host arrays with the CURRENT OF clause in an UPDATE or DELETE statement.
When DBMS=V6, no error is generated if you SELECT or FETCH nulls into a host array that is not associated with an indicator array. So, when doing array SELECTs and FETCHes, always use indicator arrays. That way, you can test for nulls in the associated output host array.
When DBMS=V7, if you SELECT or FETCH a null into a host variable that is not associated with an indicator variable, Oracle stops processing, sets sqlerrd[3] to the number of rows processed, and issues the following error message:
ANSI Restrictions and Requirements
When MODE={ANSI | ANSI13 | ORACLE}, array SELECTs and FETCHes are allowed. You can flag the use of arrays by specifying the FIPS precompiler option.
When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a host array that is not associated with an indicator array, Oracle stops processing, sets sqlerrd[3] to the number of rows processed, and issues the following error message:
When MODE=ANSI13, Oracle stops processing and sets sqlerrd[3] to the number of rows processed but no error is generated.
When MODE=ANSI, Oracle does not consider truncation an error.
You cannot use PL/1 BASED variables in SQL statements. Also, PL/1 pointers cannot be directly referenced in SQL statements. This restriction includes reference to structure elements using pointers. That is, you cannot declare a BASED structure in a Declare Section, allocate the structure, and then refer to the elements with respect to the pointer in a SQL statement.
The following code is accepted by the precompiler, but does not execute correctly (an Oracle error message is issued at run time):
You can, of course, use pointers in pure PL/1 code.
The Oracle character datatypes can be directly converted to the PL/1 CHARACTER VARYING datatype. You declare CHARACTER VARYING as a host variable in the normal PL/1 style, as follows:
This section explains how the Pro*PL/1 Precompiler handles character host variables. There are two host variable character types:
The MODE option, which you can specify on the command line, determines how the Pro*PL/1 Precompiler treats data in character arrays and strings. The MODE option allows your program to take advantage of ANSI fixed-length strings, or to maintain compatibility with previous versions of Oracle and Pro*PL/1.
Note: The MODE option does not affect the way Pro*PL/1 handles CHARACTER (N) VARYING host variables. |
These choices are referred to in this section as Oracle mode and ANSI mode, respectively. Oracle is the default mode, and is in effect when the MODE option is not specified on the command line. When discussing character handling, MODE={ANSI13 | ANSI14} is effectively equivalent to Oracle mode.
The MODE option affects the way character data is treated on input from your host variables to the Oracle table.
On Input
When the mode is Oracle, the program interface strips trailing blanks up to the first non-blank character. After stripping the blanks, the value is sent to the database. If you are inserting into a fixed-length CHAR column, trailing blanks are then re-appended to the data by Oracle, up to the length of the database column. If you are inserting into a variable-length VARCHAR2 column, Oracle never appends blanks.
When the mode is ANSI, trailing blanks in the CHARACTER host variable are never stripped.
Be sure that the input host variable does not contain characters other than blanks after the data. For example, null characters are not stripped, and are inserted into the database. The easiest way to insure this in PL/1 is to always use CHARACTER(N) host variables for character data. When values are read into these variables, or assigned to them, PL/1 appends blanks to the data, up to the length of the variable. The following example illustrates this:
If you precompile this example in Oracle mode, the values 'MILLER' and 'SALES' are sent to the database, since the program interface strips the trailing blanks that PL/1 appends to the CHARACTER host variables. If you precompile this example in ANSI mode, the trailing blanks that PL/1 appends are not stripped, and the values 'MILLER ' (four trailing blanks) and 'SALES ' (three trailing blanks) are sent to the database.
In ANSI mode, if the JOB column in the EMP table is defined as CHAR(10), the resulting value in the JOB column is 'SALES ' (five trailing blanks). If the JOB column is defined as VARCHAR2(10), the resulting value in the column is 'SALES ' (three trailing blanks, since the host variable is a CHARACTER (8). This might not be what you want, so be careful when inserting data into VARCHAR2 columns using programs that were precompiled in ANSI mode.
On Output
The MODE option does not affect the way that character data are treated on output. When you use a CHARACTER (N) variable as an output host variable, the program interface always blank-pads it. In our example, when your program fetches the string 'MILLER' from the database, EMP_NAME contains the value 'MILLER ' (with 4 blanks). This character string can be used without change as input to another SQL statement.
Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify the formats used by Oracle to store column values in database tables, and the formats used to represent pseudocolumn values. External datatypes specify the formats used to store values in input and output host variables. For descriptions of the Oracle datatypes, see Chapter 3 of the Oracle Database Programmer's Guide to the Oracle Precompilers.
For values stored in database columns, Oracle uses the following internal datatypes, which were chosen for their efficiency:
Name | Code | Description |
---|---|---|
VARCHAR2 | 1 | 2000-byte, variable-length character string |
NUMBER | 2 | fixed or floating point number |
LONG | 8 | 231-1 byte, variable-length character string |
ROWID | 11 | operating-system dependent |
DATE | 12 | 7-byte, fixed-length date/time value |
RAW | 23 | 255-byte, variable-length binary data |
LONG RAW | 24 | 231-1 byte, variable-length binary data |
CHAR | 96 | 255-byte, fixed-length character string |
MLSLABEL | 106 | variable-length binary data, 2-5 bytes |
These internal datatypes can be quite different from PL/1 datatypes. For example, PL/1 has no equivalent to the NUMBER datatype, which was specially designed for portability.
SQL recognizes the following pseudocolumns and parameterless functions, which return specific data items:
Pseudocolumn | Corresponding Internal Datatype | Code |
---|---|---|
NEXTVAL | NUMBER | 2 |
CURRVAL | NUMBER | 2 |
LEVEL | NUMBER | 2 |
ROWNUM | NUMBER | 2 |
ROWID | ROWID | 11 |
ROWLABEL | MLSLABEL | 106 |
USER | VARCHAR2 | 1 |
UID | NUMBER | 2 |
SYSDATE | DATE | 12 |
Pseudocolumns are not actual columns in a table, but, like columns, their values must be SELECTed from a table.
You can reference SQL pseudocolumns and functions in SELECT, INSERT, UPDATE and DELETE statements.
As the following table shows, the external datatypes include all the internal datatypes plus several datatypes found in popular host languages. For example, the INTEGER external datatype refers to a PL/1 FIXED BINARY(31).
Name | Code | Description |
---|---|---|
VARCHAR2 | 1 | variable-length character string |
NUMBER | 2 | number |
INTEGER | 3 | signed integer |
FLOAT | 4 | floating point number |
STRING | 5 | variable-length null-terminated character string |
VARNUM | 6 | variable-length number |
DECIMAL | 7 | COBOL or PL/1 packed decimal |
LONG | 8 | fixed-length character string |
VARCHAR | 9 | variable-length character string |
ROWID | 11 | binary value |
DATE | 12 | fixed-length date/time value |
VARRAW | 15 | variable-length binary data |
RAW | 23 | fixed-length binary data |
LONG RAW | 24 | fixed-length binary data |
UNSIGNED | 68 | unsigned integer |
DISPLAY | 91 | COBOL numeric character string |
LONG VARCHAR | 94 | variable-length character string |
LONG VARRAW | 95 | variable-length binary data |
CHAR | 1 96 | variable-length character string, if DBMS=V6 fixed-length character string, if DBMS=V7 |
CHARZ | 97 | fixed-length null-terminated character string |
MLSLABEL | 106 | variable-length binary data |
At precompile time, an external datatype is assigned to each host variable in the Declare Section. For example, the precompiler assigns the Oracle FLOAT external datatype to host variables of type FLOAT DECIMAL.
At run time, the datatype code of every host variable used in a SQL statement is passed to Oracle. Oracle uses the codes to convert between internal and external datatypes.
Before assigning a SELECTed column (or pseudocolumn) value to an output host variable, Oracle must convert the internal datatype of the source column to the datatype of the host variable. Likewise, before assigning or comparing the value of an input host variable to a column, Oracle must convert the external datatype of the host variable to the internal datatype of the target column.
Conversions between internal and external datatypes follow the usual data conversion rules. For example, you can convert a CHAR value of '1234' to a FIXED BINARY(15) value. But, you cannot convert a CHAR value of '65543' (number too large) or '10F' (number not decimal) to a FIXED BINARY(15) value. Likewise, you cannot convert a CHARACTER(N) VARYING value that contains alphabetic characters to a NUMBER value.
For more information about datatype conversion, see Chapter 3 of the Oracle Database Programmer's Guide to the Oracle Precompilers.
Datatype equivalencing lets you control the way Oracle interprets input data, and the way Oracle formats output data. On a variable-by-variable basis, you can equivalence supported PL/1 datatypes to Oracle external datatypes.
By default, the Pro*PL/1 Precompiler assigns a specific external datatype to every host variable. The following table shows the default assignments:
Host Datatype | External Datatype | Code |
---|---|---|
CHARACTER (N) | VARCHAR2 | 1 when MODE!=ANSI |
FIXED BINARY (15) | INTEGER | 3 when MODE=ANSI |
FIXED BINARY (31) | INTEGER | 3 |
FLOAT BINARY (N) | FLOAT | 4 |
FLOAT DECIMAL (P,S) | FLOAT | 4 |
FIXED DECIMAL (N) | DECIMAL | 7 |
FIXED DECIMAL (P,S) | DECIMAL | 7 |
CHARACTER (N) VARYING | VARCHAR | 9 |
Using the VAR statement, you can override the default assignments by equivalencing host variables to Oracle external datatypes in the Declare Section. The syntax you use is
where:
host_variable
is an input or output host variable (or host array) declared earlier in the Declare Section. type_name
is the name of a valid external datatype. length
is an integer literal specifying a valid length in bytes. precision
and scale
are specified where required by the type. Host variable equivalencing is useful in several ways. For example, you can use it when you want Oracle to store but not interpret data. Suppose you want to store a host array of 4-byte integers in a RAW database column. Simply equivalence the host array to the RAW external datatype, as follows:
With host arrays, the length you specify must match exactly the buffer size required to hold the array. So, you specify a length of 200, which is the buffer size required to hold 50 4-byte integers.
The following external datatypes cannot be used in the VAR command in Pro*PL/1:
The Pro*PL/1 Precompiler treats a PL/SQL block like a single embedded SQL statement. So, you can place a PL/SQL block anywhere in a host program that you can place a SQL statement.
To embed a PL/SQL block in your host program, you simply declare the variables to be shared with PL/SQL, and bracket the PL/SQL block with the keywords EXEC SQL EXECUTE and END-EXEC.
Inside a PL/SQL block, host variables are treated as global to the entire block, and can be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement, host variables in a PL/SQL block must be prefixed with a colon. The colon sets host variables apart from PL/SQL variables and database objects.
In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be appended to its associated host variable. And, if you refer to a host variable with its indicator variable, you must always refer to it that way in the same block.
You must use the SQLCHECK=SEMANTICS option when precompiling a program with an embedded PL/SQL block. You may also want to use the USERID option. See the Oracle Database Programmer's Guide to the Oracle Precompilers for more information.
Your host program must log in to Oracle before it can manipulate data. To log in, use the SQL connect statement
where "USERNAME" and "PASSWORD" are PL/1 character strings containing the user ID and the Oracle password. Or, you can use the SQL statement
where "USER_PASSWORD" is a PL/1 character variable containing the user ID, a slash (/), and the password. For more information about connecting to Oracle see Oracle Database Administrator's Guide.
The following examples show both ways of connecting to Oracle:
You can automatically log in to Oracle with the user ID
prefix
username
where username is the current operating system user or task name, prefixusername is a valid Oracle username, and prefix is a value determined by the Oracle initialization parameter OS_AUTHENT_PREFIX. For backward compatibility, prefix defaults to OPS$. For more information about operating system authentication, see the Oracle Database Administrator's Guide.
This automatically connects you as user prefixusername. For example, if your operating system username is RHILL, and OPS$RHILL is a valid Oracle username, connecting with '/' automatically logs you on to Oracle as user OPS$RHILL.
Your application can use SQL*Net to concurrently access any combination of remote and local databases, or make multiple connections to the same database. In the following example, you connect to two non default databases concurrently:
DBNAM1 and DBNAM2 name the non default connections; they are identifiers used by the precompiler, not host variables.
This chapter discusses error reporting and recovery. You learn how to handle errors and status changes using the SQLSTATE, SQLCA, SQLCODE, and WHENEVER statements. You also learn how to diagnose problems using the ORACA.
Release 1.6 provides forward and backward compatibility for checking the outcome of executing SQL statements. The SQLCA data structure containing status information and SQLCODE status variable can be used in the same manner as in previous releases. The SQLSTATE status variable is introduced in release 1.6.
When MODE=ANSI, you must declare SQLSTATE or SQLCODE. Declaring the SQLCA is optional. When MODE=ORACLE, not declaring the SQLCA causes compile time warnings and run-time errors.
Unlike SQLCODE, which stores signed integers and can be declared outside the Declare Section, SQLSTATE stores 5-character strings and must be declared inside the Declare Section. You declare SQLSTATE as:
Note: SQLSTATE must be declared with exactly 5 characters. |
SQLSTATE status codes consist of a 2-character class code followed by a 3-character subclass code. Except class code 00 ("successful completion"), the class code denotes a category of exceptions. And, except subclass code 000 ("not applicable"), the subclass code denotes a specific exception within that category. For example, the SQLSTATE value '22012' consists of class code 22 ("data exception") and subclass code 012 ("division by zero").
Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range A..H are reserved for predefined conditions (those defined in the SQL standard). All other class codes are reserved for implementation-defined conditions. Within predefined classes, subclass codes that begin with a digit in the range 0..4 or a letter in the range A..H are reserved for predefined subconditions. All other subclass codes are reserved for implementation-defined subconditions. shows the coding scheme.
Figure 2-1 SQLSTATE Coding Scheme
Table 2-1 shows the classes predefined by the SQL standard.
Table 2-1 Predefined Classes
Class | Condition |
---|---|
00 | success completion |
01 | warning |
02 | no data |
07 | dynamic SQL error |
08 | connection exception |
09 | triggered action exception |
0A | feature not supported |
0D | invalid target type specification |
0E | invalid schema name list specification |
0F | locator exception |
0L | invalid grantor |
0M | invalid SQL-invoked procedure reference |
0P | invalid role specification |
0S | invalid transform group name specification |
0T | target table disagrees with cursor specification |
0U | attempt to assign to non-updatable column |
0V | attempt to assign to ordering column |
0W | prohibited statement encountered during trigger execution |
0Z | diagnostics exception |
21 | cardinality violation |
22 | data exception |
23 | integrity constraint violation |
24 | invalid cursor state |
25 | invalid transaction state |
26 | invalid SQL statement name |
27 | triggered data change violation |
28 | invalid authorization specification |
2A | direct SQL syntax error or access rule violation |
2B | dependent privilege descriptors still exist |
2C | invalid character set name |
2D | invalid transaction termination |
2E | invalid connection name |
2F | SQL routine exception |
2H | invalid collation name |
30 | invalid SQL statement identifier |
33 | invalid SQL descriptor name |
34 | invalid cursor name |
35 | invalid condition number |
36 | cursor sensitivity exception |
37 | dynamic SQL syntax error or access rule violation |
38 | external routine exception |
39 | external routine invocation exception |
3B | savepoint exception |
3C | ambiguous cursor name |
3D | invalid catalog name |
3F | invalid schema name |
40 | transaction rollback |
42 | syntax error or access rule violation |
44 | with check option violation |
HZ | remote database access |
Note: The class code HZ is reserved for conditions defined in International Standard ISO/IEC DIS 9579-2, Remote Database Access. |
Table 2-2 shows how SQLSTATE status codes and conditions are mapped to Oracle errors. Status codes in the range 60000..99999 are implementation-defined.
Table 2-2 SQLSTATE Status Codes
Code | Condition | Oracle Error(s) |
---|---|---|
00000 | successful completion | ORA-00000 |
01000 | warning | |
01001 | cursor operation conflict | |
01002 | disconnect error | |
01003 | null value eliminated in set function | |
01004 | string data-right truncation | |
01005 | insufficient item descriptor areas | |
01006 | privilege not revoked | |
01007 | privilege not granted | |
01008 | implicit zero-bit padding | |
01009 | search condition too long for info schema | |
0100A | query expression too long for info schema | |
02000 | no data | ORA-01095 ORA-01403 |
07000 | dynamic SQL error | |
07001 | using clause does not match parameter specs | |
07002 | using clause does not match target specs | |
07003 | cursor specification cannot be executed | |
07004 | using clause required for dynamic parameters | |
07005 | prepared statement not a cursor specification | |
07006 | restricted datatype attribute violation | |
07007 | using clause required for result components invalid descriptor count | |
07008 | invalid descriptor count | SQL-02126 |
07009 | invalid descriptor index | |
08000 | connection exception | |
08001 | SQL-client unable to establish SQL-connection | |
08002 | connection name is use | |
08003 | connection does not exist | SQL-02121 |
08004 | SQL-server rejected SQL-connection | |
08006 | connection failure | |
08007 | transaction resolution unknown | |
0A000 | feature not supported | ORA-03000..03099 |
0A001 | multiple server transactions | |
21000 | cardinality violation | ORA-01427 SQL-02112 |
22000 | data exception | |
22001 | string data - right truncation | ORA-01406 |
22002 | null value-no indicator parameter | SQL-02124 |
22003 | numeric value out of range | ORA-01426 |
22005 | error in assignment | |
22007 | invalid datetime format | |
22008 | datetime field overflow | ORA-01800..01899 |
22009 | invalid time zone displacement value | |
22011 | substring error | |
22012 | division by zero | ORA-01476 |
22015 | interval field overflow | |
22018 | invalid character value for cast | |
22019 | invalid escape character | ORA-00911 |
22021 | character not in repertoire | |
22022 | indicator overflow | ORA-01411 |
22023 | invalid parameter value | ORA-01025 ORA-04000..04019 |
22024 | unterminated C string | ORA-01479 ORA-01480 |
22025 | invalid escape sequence | ORA-01424 ORA-01425 |
22026 | string data-length mismatch | ORA-01401 |
22027 | trim error | |
23000 | integrity constraint violation | ORA-02290..02299 |
24000 | invalid cursor state | ORA-001002 ORA-001003 SQL-02114 SQL-02117 |
25000 | invalid transaction state | SQL-02118 |
26000 | invalid SQL statement name | |
27000 | triggered data change violation | |
28000 | invalid authorization specification | |
2A000 | direct SQL syntax error or access rule violation | |
2B000 | dependent privilege descriptors still exist | |
2C000 | invalid character set name | |
2D000 | invalid transaction termination | |
2E000 | invalid connection name | |
33000 | invalid SQL descriptor name | |
34000 | invalid cursor name | |
35000 | invalid condition number | |
37000 | dynamic SQL syntax error or access rule violation | |
3C000 | ambiguous cursor name | |
3D000 | invalid catalog name | |
3F000 | invalid schema name | |
40000 | transaction rollback | ORA-02091 ORA-02092 |
40001 | serialization failure | |
40002 | integrity constraint violation | |
40003 | statement completion unknown | |
42000 | syntax error or access rule violation | ORA-00022 ORA-00251 ORA-00900..00999 ORA-01031 ORA-01490..01493 ORA-01700..01799 ORA-01900..02099 ORA-02140..02289 ORA-02420..02424 ORA-02450..02499 ORA-03276..03299 ORA-04040..04059 ORA-04070..04099 |
44000 | with check option violation | ORA-01402 |
60000 | system error | ORA-00370..00429 ORA-00600..00899 ORA-06430..06449 ORA-07200..07999 ORA-09700..09999 |
61000 | multi-threaded server and detached process errors | ORA-00018..00035 ORA-00050..00068 ORA-02376..02399 ORA-04020..04039 |
62000 | multi-threaded server and detached process errors | ORA-00100..00120 ORA-00440..00569 |
63000 | Oracle*XA and two-task interface errors | ORA-00150..00159 ORA-02700..02899 ORA-03100..03199 ORA-06200..06249 |
64000 | control file, database file, and redo file errors; archival and media recovery errors | ORA-00200..00369 ORA-01100..01250 |
65000 | PL/SQL errors | ORA-06500..06599 |
66000 | SQL*Net driver errors | ORA-06000..06149 ORA-06250..06429 ORA-06600..06999 ORA-12100..12299 ORA-12500..12599 |
67000 | licensing errors | ORA-00430..00439 |
69000 | SQL*Connect errors | ORA-00570..00599 ORA-07000..07199 |
72000 | SQL execute phase errors | ORA-00001 ORA-01000..01099 ORA-01400..01489 ORA-01495..01499 ORA-01500..01699 ORA-02400..02419 ORA-02425..02449 ORA-04060..04069 ORA-08000..08190 ORA-12000..12019 ORA-12300..12499 ORA-12700..21999 |
82100 | out of memory (could not allocate) | SQL-02100 |
82101 | inconsistent cursor cache (UCE/CUC mismatch) | SQL-02101 |
82102 | inconsistent cursor cache (no CUC entry for UCE) | SQL-02102 |
82103 | inconsistent cursor cache (out-or-range CUC ref) | SQL-02103 |
82104 | inconsistent cursor cache (no CUC available) | SQL-02104 |
82105 | inconsistent cursor cache (no CUC entry in cache) | SQL-02105 |
82106 | inconsistent cursor cache (invalid cursor number) | SQL-02106 |
82107 | program too old for run-time library; re-precompile | SQL-02107 |
82108 | invalid descriptor passed to run-time library | SQL-02108 |
82109 | inconsistent host cache (out-or-range SIT ref) | SQL-02109 |
82110 | inconsistent host cache (invalid SQL type) | SQL-02110 |
82111 | heap consistency error | SQL-02111 |
82113 | code generation internal consistency failed | SQL-02115 |
82114 | reentrant code generator gave invalid context | SQL-02116 |
82117 | invalid OPEN or PREPARE for this connection | SQL-02122 |
82118 | application context not found | SQL-02123 |
HZ000 | remote database access |
The following rules apply to using SQLSTATE with SQLCODE or the SQLCA when you precompile with the option setting MODE=ANSI. SQLSTATE must be declared inside a Declare section; otherwise, it is ignored.
If you declare SQLSTATE
If you do not declare SQLSTATE
You can learn the outcome of the most recent executable SQL statement by checking SQLSTATE explicitly with your own code or implicitly with the WHENEVER SQLERROR statement. Check SQLSTATE only after executable SQL statements and PL/SQL statements.
When MODE={ANSI | ANSI14} and you have not declared SQLSTATE, you must declare a long integer variable named SQLCODE inside or outside the Declare Section. Upper case is required. An example follows:
After every SQL operation, Oracle returns a status code to the SQLCODE variable currently in scope. The status code, which indicates the outcome of the SQL operation, can be any of the numbers listed in the following table:
You can learn the outcome of the most recent SQL operation by checking SQLCODE explicitly with your own code or implicitly with the WHENEVER statement.
When you declare SQLCODE instead of the SQLCA in a particular precompilation unit, the precompiler allocates an internal SQLCA for that unit. Your host program cannot access the internal SQLCA. If you declare the SQLCA and SQLCODE, Oracle returns the same status code to both after every SQL operation.
When MODE={ANSI13 | Oracle}, if you declare SQLCODE, it is not used.
Oracle uses the SQLCA to store status information passed to your program at run time. The SQLCA always reflects the outcome of the most recent SQL operation. To determine that outcome, you can check variables in the SQLCA explicitly with your own PL/1 code, or implicitly with the WHENEVER statement.
When MODE=ORACLE (the default) or MODE=ANSI13, you must declare the SQLCA by hardcoding it or by copying it into your program with the INCLUDE statement.
When MODE={ANSI | ANSI14}, declaring the SQLCA is optional. However, you must declare a status variable named SQLCODE. the SQL standard specifies a similar status variable named SQLSTATE, which you can use with or without SQLCODE.
After executing a SQL statement, the Oracle Server returns a status code to the SQLSTATE variable currently in scope. The status code indicates whether the SQL statement executed successfully or raised an exception (error or warning condition). To promote interoperability (the ability of systems to exchange information easily), the SQL standard predefines all the common SQL exceptions.
Unlike SQLCODE, which stores only error codes, SQLSTATE stores error and warning codes. Furthermore, the SQLSTATE reporting mechanism uses a standardized coding scheme. Thus, SQLSTATE is the preferred status variable. SQLCODE was a deprecated feature of SQL-92 that was retained only for compatibility with SQL-89. SQLCODE has been removed from all editions of the SQL standard subsequent to SQL-92.
To declare the SQLCA, copy it into your program with the INCLUDE statement
or hardcode it as shown:
Not declaring the SQLCA when MODE=Oracle results in compile time warnings, and causes run-time errors.
Your Pro*PL/1 program can have more than one SQLCA. The SQLCA should not be INCLUDEd outside of a procedure block, since the elements in it are not declared with the STATIC storage class. Oracle returns information to the SQLCA that is in the scope of the SQL statement that caused the error or warning condition. The name of this structure must be SQLCA, since it is referred to by precompiler-generated code.
The SQLCA contains run-time information about the execution of SQL statements, such as Oracle error codes, warning flags, event information, rows-processed count, and diagnostics.
The key components of Pro*PL/1 error reporting depend on several fields in the SQLCA.
Every executable SQL statement returns a status code in the SQLCA variable SQLCODE, which you can check implicitly with WHENEVER SQLERROR, or explicitly with your own PL/1 code.
Warning flags are returned in the SQLCA variables SQLWARN0 through SQLWARN7, which you can check implicitly with WHENEVER SQLWARNING, or explicitly with your own PL/1 code. These warning flags are useful for detecting run-time conditions not considered errors by Oracle.
The number of rows processed by the most recently executed SQL statement is recorded in the SQLCA variable SQLERRD(3). For repeated FETCHes on an OPEN cursor, SQLERRD(3) keeps a running total of the number of rows fetched.
Before executing a SQL statement, Oracle must parse it, that is, examine it to make sure it follows syntax rules and refers to valid database objects. If Oracle finds an error, an offset is stored in the SQLCA variable SQLERRD(5), which you can check explicitly. The offset specifies the character position in the SQL statement at which the parse error begins. The first character occupies position zero. For example, if the offset is 9, the parse error begins at the 10th character.
If your SQL statement does not cause a parse error, Oracle sets SQLERRD(5) to zero. Oracle also sets SQLERRD(5) to zero if a parse error begins at the first character, which occupies position zero. So, check SQLERRD(5) only if SQLCODE is negative, which means that an error has occurred.
The error code and message for Oracle errors are available in the SQLCA variable SQLERRM. For example, you might place the following statements in an error-handling routine:
At most, the first 70 characters of message text are stored. For messages longer than 70 characters, you must call the SQLGLM function.
The SQLCA can accommodate error messages of up to 70 characters in length. To get the full text of longer (or nested) error messages, you need the SQLGLM procedure. If connected to Oracle, you can call SQLGLM using the syntax
where:
MSG_BUF
Is the buffer in which you want Oracle to store the error message. Oracle blank-pads to the end of this buffer.
BUF_SIZE
Is an integer variable that specifies the maximum length of MSG_BUF in bytes.
MSG_LENGTH
Is an integer variable in which Oracle stores the actual length of the error message.
The maximum length of an Oracle error message is 196 characters including the error code, nested messages, and message inserts such as table and column names. The maximum length of an error message returned by SQLGLM depends on the value you specify for BUF_SIZE. In the following example, you use SQLGLM to get an error message of up to 200 characters in length:
Notice that SQLGLM is called only when a SQL error has occurred. Always make sure SQLCA.SQLCODE is negative before calling SQLGLM. If you call SQLGLM when SQLCODE is zero, you get the message text associated with a prior SQL statement.
By default, the Pro*PL/1 Precompiler ignores Oracle error and warning conditions and continues processing if possible. To do automatic condition checking and error handling, you need the WHENEVER statement.
With the WHENEVER statement you can specify actions to be taken when Oracle detects an error, warning condition, or "not found" condition. These actions include continuing with the next statement, calling a procedure, branching to a labeled statement, or stopping.
You code the WHENEVER statement using the following syntax:
You can have Oracle automatically check the SQLCA for any of the following conditions:
When Oracle detects one of the preceding conditions, you can have your program take any of the following actions:
When using the WHENEVER ... DO statement, the usual rules for entering and exiting a procedure apply. However, passing parameters to the subroutine is not allowed. Furthermore, the subroutine must not return a value.
In the following example, you use WHENEVER SQLERROR DO statements to handle specific errors:
Notice how the procedure checks variables in the SQLCA to determine a course of action.
For more information about the WHENEVER conditions and actions, see Chapter 7 of the Oracle Database Programmer's Guide to the Oracle Precompilers.
Because WHENEVER is a declarative statement, its scope is positional, not logical. That is, it tests all executable SQL statements that physically (not logically) follow it in your program. So, code the WHENEVER statement before the first executable SQL statement you want to test.
A WHENEVER statement stays in effect until superseded by another WHENEVER statement checking for the same condition.
You might want to place WHENEVER statements at the beginning of each block that contains SQL statements. That way, SQL statements in one block will not reference WHENEVER actions in another block, causing errors at compile or run time.
Careless use of WHENEVER can cause problems. For example, the following code enters an infinite loop if the DELETE statement sets NOT FOUND because no rows meet the search condition:
In the next example, you handle the NOT FOUND condition properly by resetting the GOTO target:
Also, make sure all SQL statements governed by a WHENEVER ... GOTO statement can branch to the GOTO label. The following code results in a compile time error because the UPDATE statement in PROC2 is not within the scope of LABEL_A in PROC1:
The SQLCA handles standard SQL communications. The ORACA is a similar data structure copied or hardcoded into your program to handle Oracle-specific communications. When you need more run-time information than the SQLCA provides, use the ORACA.
Besides helping you to diagnose problems, the ORACA lets you monitor your program's use of Oracle resources, such as the SQL Statement Executor and the cursor cache, an area of memory reserved for cursor management.
To declare the ORACA, you can copy it into your main program with the INCLUDE statement, as follows:
Alternatively, you can hardcode it as follows:
To enable the ORACA, you must set the ORACA precompiler option to YES, either on the command line with
or inline with
Then, you must choose appropriate run-time options by setting flags in the ORACA.
Enabling the ORACA is optional because it adds to run-time overhead. The default setting is ORACA=NO.
The ORACA contains option settings, system statistics, and extended diagnostics. The preceding listing shows all the variables in the ORACA.
For a full description of the ORACA, its fields, and the values the fields can store, see Chapter 7 of the Oracle Database Programmer's Guide to the Oracle Precompilers.
This chapter provides the basic information you need to invoke the Pro*PL/1 Precompiler.
To run the Pro*PL/1 Precompiler, you issue the following command:
The location of the precompiler differs from system to system. The system or database administrator defines environment variables, aliases, or uses other system-specific means to make the Pro*PL/1 executable accessible.
The INAME= option specifies the source file to be precompiled. For example, the command
precompiles the file test_propli.ppl in the current directory, since the precompiler assumes that the filename extension is .ppl. You need not use a file extension when specifying INAME unless the extension is nonstandard. The INAME options does not have to be the first option on the command line, but if it is, you can omit the option specification. So, the command
is equivalent to
Note: Option names and option values that do not name specific operating-system objects, such as, filenames are not case-sensitive. In the examples in this guide, option names are written in upper case and option values are usually in lowercase. Filenames, including the name of the Pro*PL/1 Precompiler executable itself always follow the case conventions used by your operating system. |
Many useful options are available at precompile time. They help you control how resources are used, how errors are reported, how input and output are formatted, and how cursors are managed. To specify a precompiler option, you use the following syntax:
See Chapter 11 of the Oracle Database Programmer's Guide to the Oracle Precompilers for a list of precompiler options. The list gives the purpose, syntax, default value, and usage notes for each option.
A handy reference to the precompiler options is available online. To see the online display, enter the precompiler command with no arguments at your operating system prompt. The display gives the name, syntax, default value, and purpose of each option. Options marked with an asterisk (*) can be specified inline and on the command line.
The value of an option is a string literal, which can represent text or numeric values. For example, for the option
the value is a string literal that specifies a filename. But for the option
the value is numeric.
Some options take Boolean values, and you can represent these with the strings yes or no. For example, the option
The option value is always separated from the option name by an equals sign, with no whitespace around the equals sign.
Many of the options have default values. The default value of an option is determined by:
a value set in the Pro*PL/1 system configuration file
For example the option MAXOPENCURSORS specifies the maximum number of cached open cursors. The built-in precompiler default value for this option is 10. However, if MAXOPENCURSORS=32 is specified in the system configuration file, the default now becomes 32. The user configuration file could set it to yet another value, which then overrides the system configuration value. Then, if this option is set on the command line, the new command-line value takes precedence over the precompiler default, the system configuration file specification, and the user configuration file specification. Finally, an inline specification takes precedence over all preceding defaults. For more information see the section "Configuration Files" on page "Configuration Files".
Some options, such as USERID, do not have a precompiler default. For more information, see the Oracle Database Programmer's Guide to the Oracle Precompilers.
You can interactively determine the current value for one or more options by using a question mark on the command line. For example, if you issue the command
the complete set of options, along with their current values, is printed to your terminal. (On a UNIX system running the C shell, escape the '?' with a backslash.) In this case, the values are those built into the precompiler, overridden by any values in the system configuration file. But if you issue the command
and there is a file named my_config_file.cfg in the current directory, the options are listed. Values in the user configuration file supply missing values, and supersede values built-in to the Pro*PL/1 precompiler, or values specified in the system configuration file.
You can also determine the current value of a single option, by simply specifying that option name, followed by =?. For example
prints the current default value for the MAXOPENCURSORS option.
In general, you can use either uppercase or lowercase for command-line option names and values However, if your operating system is case sensitive, like UNIX, you must specify filename values, including the name of the Pro*PL/1 executable, using the correct combination of upper and lowercase letters.
A configuration file is a text file that contains precompiler options. Each record (line) in the file contains one option, with its associated value or values. For example, a configuration file might contain the lines
to set defaults for the FIPS, MODE, and CODE options.
There is a single system configuration file for each system. The name of the system configuration file is pccpli.cfg.. The location of the file is operating system specific. On most UNIX systems, the file specification is usually located in $ORACLE_HOME/propli/pccpli.cfg.
Each Pro*PL/1 user can have one or more user configuration files. The name of the configuration file must be specified using the CONFIG= command-line option.
Note: You cannot nest configuration files. CONFIG= is not a valid option inside a configuration file. |
The options specified when you precompile a given Pro*PL/1 source file affect only the code generated from that file; they have no effect on other modules that may be linked in to form the final program. For example, if you specify MAXLITERAL for file A but not for file B, SQL statements in file A run with the specified MAXLITERAL value, but SQL statements in file B run with the default value.
There is one exception to this rule: the MAXOPENCURSORS value that is in effect when a connection to a database is made, stays in effect for the life of that connection.
An option setting stays in effect until the end-of-file unless you respecify the option. For more information on other options, see the Oracle Database Programmer's Guide to the Oracle Precompilers.
Specifies whether Oracle follows the semantic and syntactic rules of Oracle version 6, Oracle version 7, or the native version of Oracle (that is, the version to which the application is connected).
Syntax
DBMS=NATIVE | V6 | V7
Default
NATIVE
Usage Notes
Can be entered only on the command line.
The DBMS option lets you control the version-specific behavior of Oracle. When DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the database version to which the application is connected.
When DBMS=V6, or DBMS=V7, Oracle follows the rules of Oracle Version 6 or Oracle database version 7, respectively. A summary of the differences between DBMS=V6 and DBMS=V7 follows:
If you precompile using the DBMS=V6 option, and connect to an Oracle database version 7 database, then a data definition language statement such as
creates the table using the VARCHAR2 (variable-length) datatype, as if the CREATE TABLE statement had been
Specifies whether your program observes Oracle practices or complies with the current ANSI/ISO SQL standards.
Syntax
MODE=ANSI | ANSI13 | ANSI14 |ISO | ORACLE
Default
ORACLE
Usage Notes
Can be entered only on the command line.
ISO is a synonym for ANSI.
When MODE=ORACLE (the default), your embedded SQL program observes Oracle practices. When MODE=ANSI, your program complies fully with the ANSI standard, and the following changes go into effect:
All the precompiler options can be entered on the command line; some can also be entered inline (within the source file).
Separate each option with one or more spaces.
For example, you might enter
You enter options inline by coding EXEC Oracle statements, using the following syntax:
For example, you might code
An option entered inline overrides the same option entered on the command line. The scope of an inline option is positional, not logical. ("Positional" means that it takes effect for all statements that follow it in the source file, regardless of the flow of control of the program logic.)
An inline option setting stays in effect until overridden by another EXEC Oracle OPTION directive that sets the same option name.
The Pro*PL/1 Precompiler supports LMARGIN and RMARGIN controls that enable you to specify the left and right margins of the input source file. Using these controls makes it possible to support the card image format required by some compilers.
By default, the left and right margins on all IBM systems are set to 2 and 72 respectively. On all non-IBM systems, the default setting for the left margin is 1, and the default setting for the right margin is the record length of the input file. To change these defaults (to 5 and 75, for example), specify LMARGIN and RMARGIN on the command line as follows:
Conditional precompilation includes (or excludes) sections of code in your Pro*PL/1 program based on certain conditions. For example, you may want to include one section of code when precompiling under the VM operating system and another section when precompiling under VMS. Conditional precompilation lets you write programs that can run in different environments. For more information, see Chapter 11 of the Oracle Database Programmer's Guide to the Oracle Precompilers.
With the Pro*PL/1 Precompiler you can precompile several program files separately, then link them into one executable program. This allows modular programming—required when the functional components of a program are written and debugged by different programmers.
All references to an explicit cursor must be in the same program file. You cannot perform operations on a cursor that was declared in a different module. See the Oracle Database Programmer's Guide to the Oracle Precompilers, Chapter 4, for more information about cursors.
Also, any program file that contains SQL statements must have a SQLCA that is in the scope of the local SQL statements.
To produce an executable program, you must compile the PL/1 output files produced by the precompiler, then link the resulting object modules with the Oracle run-time library, SQLLIB.
Compiling and linking are system dependent. For instructions, see the Oracle Database Installation Guide specific to your operating system.
This chapter provides several embedded SQL programs to guide you in writing your own. These programs illustrate the key concepts and features of Pro*PL/1 programming and demonstrate techniques that let you take full advantage of SQL's power and flexibility.
Each sample program in this chapter is available online. The following table shows the usual filenames of the sample programs. However, the exact filename and storage location of the online files can be system dependent. Check the Oracle Database Installation Guide specific to your operating system.
File Name | Demonstrates |
---|---|
SAMPLE1.PPL | a simple query |
SAMPLE2.PPL | cursor operations |
SAMPLE3.PPL | array fetches |
SAMPLE4.PPL | datatype equivalencing |
SAMPLE5.PPL | a SQL*Forms user exit |
SAMPLE6.PPL | dynamic SQL Method 1 |
SAMPLE7.PPL | dynamic SQL Method 2 |
SAMPLE8.PPL | dynamic SQL Method 3 |
SAMPLE9.PPL | calling a stored procedure |
This user exit concatenates form fields. To call the user exit from a SQL*Forms trigger, use the syntax
where user_exit is a packaged procedure supplied with SQL*Forms and CONCAT is the name of the user exit. A sample form named CONCAT invokes the user exit. For more information about SQL*Forms user exits, see Chapter 10 in the Oracle Database Programmer's Guide to the Oracle Precompilers.
Note: The sample code listed is for a SQL*Forms user exit and is not intended to be compiled in the same manner as the other sample programs listed in this chapter. |
Dynamic SQL Method 1 executes a SQL statement contained in a host character string that is constructed at run time. The statement must not be a SELECT and must not contain input or output host variables. Method 1 has only one step:
This program demonstrates the use of dynamic SQL Method 1 to create a table, insert a row, commit the insert, and drop the table. It accesses Oracle through the SCOTT/TIGER account. It does not require user input or existing database tables. The program displays the SQL statements before their execution.
The program is available online in the file Sample6.
Dynamic SQL Method 2 processes a SQL statement contained in a host character string constructed at run time. The statement must not be a SELECT but may contain input host variables. Method 2 has two steps:
This program demonstrates the use of dynamic SQL Method 2 to insert two rows into the EMP table and then delete them. It accesses Oracle through the SCOTT/TIGER account and requires the EMP table. It does not require user input. The program displays the SQL statements before their execution.
This program is available online in the file Sample7.
Dynamic SQL Method 3 processes a SQL statement contained in a host character string constructed at run time. The statement may be a SELECT, and may contain input host variables but not output host variables (the INTO clause is on the FETCH instead). This Dynamic SQL Method 3 example processes a query, and uses the following five steps:
This program demonstrates the use of dynamic SQL Method 3 to retrieve all the names from the EMP table. It accesses Oracle through the SCOTT/TIGER account and requires the EMP table. It does not require user input. The program displays the query and its results
The program is available online in the file Sample8.
Before trying the sample program, you must create a PL/SQL package named calldemo. You do that by running a script named CALLDEMO.SQL, which is supplied with Pro*C and shown in the following. The script can be found in the Pro*C demo library.
This chapter provides the information you need to implement Dynamic SQL Method 4 in your Pro*PL/1 application. You learn the following things:
Note: For a discussion of dynamic SQL Methods 1, 2, and 3, and an overview of Method 4, see Chapter 9 of the Oracle Database Programmer's Guide to the Oracle Precompilers. |
Before looking into the requirements of Method 4, you should feel comfortable with the terms select-list item and placeholder. Select-list items are the columns or expressions following the keyword SELECT in a query. For example, the following dynamic query contains three select-list items:
Placeholders are dummy bind variables that hold places in a SQL statement for actual bind variables. You do not declare placeholders, and can name them anything you like.
Placeholders for bind variables are most often used in the SET, VALUES, and WHERE clauses. For example, the following dynamic SQL statements each contain two placeholders:
Placeholders, such as bind variables, cannot reference table or column names.
Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program
To add this flexibility to your program, you must provide additional information to the Oracle run-time library.
The Pro*PL/1 Precompiler generates calls to Oracle for all executable dynamic SQL statements. If a dynamic SQL statement contains no select-list items or placeholders, Oracle needs no additional information to execute the statement. The following DELETE statement falls into this category:
However, most dynamic SQL statements contain select-list items or placeholders, as does the following UPDATE statement:
To execute a dynamic SQL statement that contains placeholders for bind variables or select-list items, Oracle needs information about the program variables that hold the input (bind) values, and that will hold the FETCHed values when a query is executed. The information needed by Oracle is
All the information Oracle needs about select-list items or placeholders for bind variables, except their actual values, is stored in a program data structure called the SQL Descriptor Area (SQLDA).
Descriptions of select-list items are stored in a select descriptor, and descriptions of bind variables are stored in a bind descriptor.
The values of select-list items are stored in output variables; the values of bind variables are stored in input variables. You store the addresses of these variables in a select or bind SQLDA so that Oracle knows where to write output values and read input values.
How do values get stored in these variables? Output values are FETCHed using a cursor, and input values are typically filled in by the program, often from information entered interactively by the user.
DESCRIBE helps you provide the information Oracle needs by storing descriptions of select-list items or placeholders in a SQLDA.
You use the DESCRIBE statement to help obtain the information Oracle needs.
The DESCRIBE SELECT LIST statement examines each select-list item and determines its name, datatype, constraints, length, scale, and precision. It then stores this information in the select SQLDA, and in program variables pointed to by fields in the SQLDA. The total number of select-list items is also stored in the SQLDA by the DESCRIBE statement.
The DESCRIBE BIND VARIABLES statement obtains the number of placeholders in the SQL statement, and the names and lengths of each placeholder. The program must then fill in the datatype and length of the associated bind variables in the SQLDA, and obtain the bind variable values, which are stored in the program variables pointed to by fields in the SQLDA.
See the section "The Basic Steps" later in this chapter for a complete description of the steps that you perform to declare, allocate, and use the SQLDA.
This section describes the SQL Descriptor Area in detail. You learn what elements the descriptor structure contains, how they should be initialized, and how they are used in your program.
The SQLDA is a PL/1 structure that contains two top-level elements and an array of substructures. Each substructure contains information about a single input or output variable. You declare a separate SQLDA major structure for the select-list items, and for the bind (or input) variables. These are called the select descriptor and the bind descriptor.
All SQLDA elements that hold an address are declared as FIXED BINARY (31). This datatype, rather than the more natural PL/1 POINTER type, is used to achieve compatibility among different implementations of PL/1. You initialize these elements using the SQLADR procedure. The syntax of this procedure call is
as shown in the following example:
In this example, the address of the buffer SELECT_DATA_VALUE is stored in the SQLDV element in the first substructure of the array SQLDSC.
Note: Under IBM operating systems (MVS and VM/CMS), there is an alternate form of SQLADR called SQ3ADR. With SQ3ADR, the arguments are passed without using the PL/1 ADDR built-in function. See "Sample 10: Dynamic SQL Method 4 Program" to see how to use SQ3ADR. |
The SQLDVLN and SQLDVTYP elements contain the length and the datatype code for the select-list item or the bind variable. For a select descriptor, these elements are set when the SQL DESCRIBE statement is executed. You may reset them before actually fetching the values. For more information, see the later section "The SQLDA Variables." For a bind descriptor, you must set the length and datatype.
To declare a SQLDA, copy it into your program with the statement
where, DESCRIPTOR_NAME is the name of the file containing the text of the descriptor declaration. Or hardcode it as shown.
Figure 5-1 shows a SQLDA named SELDSC. It is a select descriptor. A bind descriptor is identical.
In the examples used in this section, the structures are named SELDSC for the select SQLDA, and BNDDSC for the bind SQLDA. These structures are identical, except for their names.
shows whether variables are set by calls to SQLADR, DESCRIBE commands, FETCH commands, or program assignments.
Figure 5-2 How Variables Are Set
If your program has more than one active dynamic SQL statement, each statement must have its own SQLDA(s). You can declare any number of SQLDAs with different names. For example, you might declare three select SQLDAs named SEL1, SEL2, and SEL3, so that you can FETCH from three concurrently OPEN cursors. (However, non-concurrent cursors can reuse SQLDAs.)
This section explains the purpose and use of each element in the SQLDA structure.
The name of the structure. The name is arbitrary; however, the examples in this manual use BNDDSC for a bind descriptor and SELDSC for a select descriptor. The names of the structure elements are not arbitrary; they should not be changed.
Contains the number of bind variables or select-list items that can be DESCRIBEd. Before issuing a DESCRIBE statement, your program must set this variable to the maximum size of the SQLDSC substructure array. After the DESCRIBE statement, SQLDNUM must be reset to the actual number of variables described, which is contained in SQLDFND.
Set when Oracle Database performs a DESCRIBE statement. It contains the number of bind variables or select-list items DESCRIBEd. If after a DESCRIBE, SQLDFND is less than 0, there were more bind variables or select-list items than specified in SQLDNUM. In this case, SQLDFND is set to the negative of the number of variables DESCRIBEd. For example, if SQLDNUM is 10, and SQLDFND contains the value -11 after a DESCRIBE, 11 select-list items or bind variables were found. If this happens, you cannot process the statement.
Defines an array of N substructures. In a select descriptor, each substructure holds information about a select-list item, and the addresses of the buffers that will hold the data retrieved from the item. In a bind descriptor, each substructure holds information about a bind variable, and the address of the data buffer that contains the value of the bind variable.
You must set N before compiling your program. It should be large enough to handle the maximum number of expected bind variables (for the bind descriptor) or the maximum number of expected select-list items (for the select descriptor).
Holds the address of the buffer that contains the value for this bind variable, or that will hold the data retrieved from the select-list item.
Your program must place the address in this element using the SQLADR procedure. Set this element in a select descriptor before doing a FETCH. In a bind descriptor, set it before doing the OPEN.
Holds the address of a format conversion string, used only with decimal datatypes (FIXED DECIMAL(P,S) or FIXED DECIMAL(P)). They have the Oracle external datatype code 7. The format conversion string is of the form 'PP.+SS' or 'PP.-SS', where PP is the precision of the decimal number, and SS is the scale. The '+' and '-' signs are mandatory. For example, a FIXED DECIMAL(6,2) format string would be '06.+02'. Refer to the "Coercing Datatypes after DESCRIBE" section later in this chapter for more information on the use of precision and scale for Oracle NUMBER data.
Set this element using SQLADR. Set it before a FETCH in a select descriptor, and before an OPEN in a bind descriptor. You must also set the length of the format conversion string in the SQLDFMTL element.
Select Descriptor Oracle sets this element when it executes the DESCRIBE statement. It contains the length of the select-list value. The format of the length differs among Oracle datatypes. For character datatypes (VARCHAR2 and CHAR), SQLDVLN is set to the number of bytes in the select-list item. For NUMBER datatypes, the scale is returned in the low-order byte of the variable, and the precision in the next highest-order byte.
If, for a NUMBER datatype, SQLDVLN is set to zero, then the column in the table was established with no explicit precision and scale, or the precision and scale for the select-list expression was not determined. In this case, you must decide on an appropriate value (between 0 and 38) and put it in SQLDVLN before the FETCH.
For maximum portability, use the SQLPRC or SQLPR2 library procedures (described in the "Datatypes in the SQLDA" section later in this chapter) to retrieve the precision and scale values from SQLDVLN.
You must reset SQLDVLN to the required length of the data buffer before executing the FETCH statement. For example, if you coerce a described NUMBER to a PL/1 CHARACTER string, set SQLDVLN to the precision of the number, and add two to account for the sign and decimal point.
If you coerce a NUMBER to a PL/1 FLOAT, set SQLDVLN to the length in bytes of the appropriate FLOAT type in your implementation of PL/1 (usually 4 for a FLOAT(7) or less, and 8 for a FLOAT(8) or greater). See the "Datatypes in the SQLDA" section for more information about the lengths of coerced datatypes.
Bind Descriptor Your program must set the correct SQLDVLN value, which is the length in bytes of the bind variable data buffer that SQLDV points to. Set the length before executing the OPEN statement.
Select Descriptor Oracle sets this element when it performs the DESCRIBE statement. It contains the datatype code for the select-list value. This datatype code determines how the Oracle data will be converted into the PL/1 data buffer or variable that SQLDV points to. This topic is covered in detail in the "Datatypes in the SQLDA" section later in this chapter.
Bind Descriptor The DESCRIBE statement sets this element to zero. You must set the datatype code in this element before executing the OPEN statement. The code indicates the external PL/1 type of the buffer or variable that SQLDV points to. Refer to the section "Datatypes in the SQLDA" later in this chapter for more information on the datatype codes.
Holds the address of an indicator variable, declared in your program. The indicator variable must be a FIXED BIN(15).
You put the address in this element using the SQLADR procedure.
Select Descriptor You must initialize this element before doing a FETCH. Oracle sets the indicator values after fetching select-list items.
For select descriptors, when Oracle executes the statement
if the Jth returned select-list item is NULL, the indicator-variable value to which SELDSC.SQLDSC(J).SQLDI points is set to -1. If not NULL, it is set to zero or a positive integer.
Bind Descriptor You must initialize this element and set the variable values before doing an OPEN.
For bind descriptors, when Oracle executes the statement
the indicator-variable value to which BNDDSC.SQLDSC(J).SQLDI points determines whether the Jth bind variable is NULL. If the value of an indicator variable is -1, the value of its associated variable is NULL.
Holds the address of a buffer used to store the name of a select-list item (for select descriptors) or the name of a bind variable (for bind descriptors). After a DESCRIBE, the appropriate names will be placed in the strings pointed to by the SQLDH_VNAME elements.
Your host program code must initialize the SQLDH_VNAME elements with the addresses of the strings you have declared before executing the DESCRIBE statement. Use the SQLADR procedure to do this initialization.
Contains the maximum length of the buffer pointed to by SQLDH_VNAME. Your program must set this value before issuing a DESCRIBE statement. A value placed in the string pointed to by SQLDH_VNAME will be truncated to this length if necessary.
Contains the actual number of characters in the string pointed to by SQLDH_VNAME after a DESCRIBE.
Holds the address of a string that stores the name of a bind indicator variable. It is set using SQLADR. It must be set before the DESCRIBE statement is executed. This element is not used in a select descriptor.
Contains the maximum number of characters in the SQLDI_VNAME string. Your program must initialize this value before performing a DESCRIBE statement. A value placed in the string pointed to by SQLDI_VNAME will be truncated to this length if necessary. This element is not used in a select descriptor.
This section provides more information about using the SQLDVTYP datatype element in the SQLDA. In host programs that do not use datatype equivalencing or Dynamic SQL Method 4, the precompiler predefines how to convert between Oracle data and your program host variables. When you SELECT data in a table into a PL/1 variable, the type of the PL/1 variable determines the conversion. For example, if you SELECT data from an Oracle column having the type NUMBER into a PL/1 CHARACTER array, the numeric data is converted to a character (ASCII or EBCDIC) representation. If you select the same numeric data into an integer (FIXED BINARY) variable, the data is converted to a binary integer representation. When you INSERT or UPDATE data, the data in the host variable is converted to the correct type for the column in the table.
But, when you write a Dynamic Method 4 program, you must specify the conversion by doing the following:
Oracle defines several datatypes, and for each datatype, there is a datatype code. There is a distinction between internal datatypes and external datatypes. Internal datatypes are the types that you can assign to an Oracle column in a table, and that Oracle can return from a table. The internal datatypes are CHAR, VARCHAR2, NUMBER, DATE, LONG, RAW, and LONG RAW. There are additional entities that you can SELECT from a table, such as LEVEL, CURRVAL, NEXTVAL, ROWNUM, UID, USER, and SYSDATE, but these entities are always returned as one of the basic internal types. LEVEL, CURRVAL, NEXTVAL, UID, and ROWNUM are NUMBERs; SYSDATE is a DATE type; and USER is a CHAR.
External datatypes include the internal datatypes, and in addition provide extended conversion capabilities. For example, when you DESCRIBE a select list that contains a LONG RAW item, the length of the value is not returned in the SQLDVLN element. You can coerce the LONG RAW internal type to a VARRAW external type, by placing an external datatype code for VARRAW in the SQLDVTYP element after doing the DESCRIBE, but before doing the FETCH. The data returned on the FETCH will then include the length of the LONG RAW item in the first two bytes of the output buffer.
In some cases, the internal datatype codes that a DESCRIBE operation returns in SQLDVTYP might not be the ones you want for your program's purposes. Two examples of this are DATE and NUMBER. When you DESCRIBE a select list containing a DATE item, the datatype code 12 for DATE is returned in the SQLDVTYP element. If you do not change this before the FETCH, the date value is returned as 7 binary bytes that represent the date in the Oracle internal format. To receive the date in a character format (DD-MON-YY), you must change the 12 datatype code to 1 (VARCHAR2), and increase the SQLDVLN (length) value, which was returned as 7, to 9.
Similarly, when you DESCRIBE a select list that contains a NUMBER item, the datatype code 2 is returned in SQLDVTYP. If you do not change this before the FETCH, the numeric value is returned as an array representing the number in its Oracle internal format, which is probably not what you want. So, change the 2 code to 1 (VARCHAR2), 3 (INTEGER), 4 (FLOAT), or some other appropriate type.
When coercing NUMBER (2) values to VARCHAR2 (1) for display purposes, you also have to extract the precision and scale bytes from the value that the DESCRIBE statement places in the SQLDVLN variable. You then use the precision and scale to compute a maximum length for the conversion into a PL/1 CHARACTER string, placing the value back into the SQLDVLN element before the FETCH.
The library procedure SQLPRC extracts precision and scale. You call SQLPRC using the syntax
where:
Notice that the first parameter in the SQLPRC procedure call points to the SQLDVLN element in the Jth minor structure of the SQLDSC array, and that the precision and scale parameters must be 4 bytes in size.
The SQLPRC procedure returns zero as the precision and scale values for certain SQL datatypes. The SQLPR2 procedure is similar to SQLPRC, having the same syntax, and returning the same binary values, except for the datatypes listed in the following table:
SQL Datatype | Binary Precision | Scale |
---|---|---|
FLOAT | 126 | -127 |
FLOAT (N) | N (range is 1 to 126) | -127 |
REAL | 63 | -127 |
DOUBLE PRECISION | 126 | -127 |
The following table lists the datatypes and datatype codes, and the types of host variables normally used for that external type. See the Oracle Database Programmer's Guide to the Oracle Precompilers for detailed information about the format of the external datatypes.
External Datatype | Code | PL/1 Host Variable |
---|---|---|
VARCHAR2 | 1 | CHARACTER(N) |
NUMBER | 2 | CHARACTER(N) |
INTEGER | 3 | FIXED BINARY (31) |
FLOAT | 4 | FLOAT DECIMAL(P,S) |
STRING | 5 | CHARACTER(N) |
VARNUM | 6 | CHARACTER(N) |
DECIMAL | 7 | FIXED DECIMAL(P,S) |
LONG | 8 | CHARACTER(N) |
VARCHAR | 9 | CHARACTER(N) VARYING |
ROWID | 11 | CHARACTER(N) |
DATE | 12 | CHARACTER(N) |
VARRAW | 15 | CHARACTER(N) |
RAW | 23 | CHARACTER(N) |
LONG RAW | 24 | CHARACTER(N) |
UNSIGNED | 68 | (not used in PL/1) |
DISPLAY | 91 | FIXED DECIMAL(P,S) |
LONG VARCHAR | 94 | CHARACTER(N) |
LONG VARRAW | 95 | CHARACTER(N) |
CHAR | 96 | CHARACTER(N) |
CHARZ | 97 | (not used in PL/1) |
MLSLABEL | 106 | CHARACTER(N) |
The datatype codes listed in the preceding table are the ones that you should set in the SQLDVTYP element of the SQLDA for data conversion.
DESCRIBE returns a NULL/NOT NULL indication in the SQLDVTYP element of the select descriptor, defined as a FIXED BINARY (15). If a column is declared to be NOT NULL, the high-order bit of the variable is clear; otherwise, it is set.
Before using the datatype in an OPEN or FETCH statement, if the NULL/NOT NULL bit is set, you must clear it. (Never set the bit.) You can use the library procedure SQLNUL to find out whether a column allows NULLs, and to clear the datatype's NULL/NOT NULL bit. You call SQLNUL using the syntax
where:
Parameter | Description |
---|---|
TYPE_VALUE | Is the FIXED BIN(15) variable that holds the datatype code of a select-list value, as returned by the DESCRIBE. |
TYPE_CODE | Is a variable that returns the datatype code of the select-list item, with the NULL bit cleared. |
NULL_STATUS | Is a variable that returns set to zero if the column was declared to be NOT NULL, or set to 1 if the column allows NULL values. |
The following example shows how to use SQLNUL:
Note: After SQLNUL returns, the second parameter contains the type code with the NULL bit cleared. This is the value you must use when checking for an Oracle internal datatype code. You should also make sure to reset the SQLDVTYP element in the SQLDA (before the FETCH) with a datatype code that has the high-order bit cleared. For exampleSELDSC.SQLDSC(J).SQLDVTYP = TYPE_CODE; |
Method 4 can be used to process any dynamic SQL statement. In this example, a query is processed so you can see how both input and output variables are handled. Steps that are common to all embedded SQL programs, such as connecting to Oracle and including the SQLCA, are not described here.
To process a dynamic query using Method 4, our sample program takes the following steps:
Note: If the dynamic SQL statement is not a query or contains a known number of select-list items or placeholders, then some of the preceding steps are unnecessary. |
With Method 4, you use the following sequence of embedded SQL statements:
Note that if the number of select-list items is known, you can omit DESCRIBE SELECT LIST and use the following Method 3
FETCH statement:
If the number of bind variables is known, you can omit DESCRIBE BIND VARIABLES and use the following Method 3 OPEN statement:
The following sections show how these statements allow your host program to accept and process a dynamic query using descriptors.
Your program needs a variable to store the text of the dynamic query. The variable (SELECT_STMT in our example) must be declared as a character string.
Before you include the files that contain the select and bind descriptor declarations, you should set the size of the descriptor in each file. This is set by changing the N variable for the SQLDSC array of substructures.
You normally set this to a value high enough to accommodate the maximum number of select-list items and bind variables that you expect to have to process. The program will not be able to process the SQL statement if there are more select-list items or bind variables than the number of substructures. In our example, a low number of three is used so that the structures can be easily illustrated.
Use INCLUDE to copy the files containing the SQLDA declarations into your program, as follows:
You must declare data buffers to hold the bind variables and the returned select-list items. In our examples, arbitrary names are used for the buffers used to hold the following:
Note that an array of data buffers is declared, and the dimension of the array (3) is the same as the number N of substructures (SQLDSC(N)) in each descriptor area.
You must initialize several elements in each descriptor. Some are simply set to numeric values; some require the library procedure SQLADR to place an address in the element.
In our example, you first initialize the select descriptor. Set SQLDNUM to the number of substructures (3). Then, in each substructure, set the SQLDH_MAX_VNAMEL element to the length (5) of the name data buffer (SEL_DH_VNAME). Set the SQLDVLN element to the length (10) of the value data buffer (SEL_DV). Put the addresses of the data buffers in the SQLDH_VNAME, SQLDV, and SQLDI elements using SQLADR. Finally, set the reserved and unused elements to zero.
The bind descriptor is initialized in almost the same way. The difference is that SQLDI_MAX_VNAMEL must also be initialized.
The descriptors that result after the initialization are shown in Figure 5-3 and Figure 5-4. In these pictures, the left-hand box represents the descriptor structure, and the boxes on the right represent the data buffers (such as SEL_DV) that you declared in your program. The arrows represent pointers, showing which data buffers the SQLDA elements point to.
The data buffers are empty after initialization (except SEL_DI and BND_DI, which were set to zero in the preceding example code). As our example progresses, and the DESCRIBE or FETCH statements begin to fill in the data buffers, the values will be shown in later figures. Whenever these boxes are empty, it indicates that the variable is either uninitialized or was not filled in by a DESCRIBE or FETCH statement. Unused or reserved fields in the descriptors (SQLDFMT, SQLDFMTL, SQLDFCLP, and SQLDFCRCP) are not shown in these figures.
Note: To save space, the SQLDA element names in the left hand columns of Figure 5-3 through 5-9 are abbreviated. Each structure element name must be preceded by the structure and substructure names. For example, S2.SQLDV must be written as SELDSC.SQLDSC(2).SQLDV in the PL/1 code. B3.SQLDVTYP stands for BNDDSC.SQLDSC(3).SQLDVTYP. |
Continuing our example, you prompt the user for a SQL statement, and then store the input in SELECT_STMT.
In this example, it is assumed that the user typed the string
PREPARE parses the query and gives it a name. In our example, PREPARE parses the host string SELECT_STMT and gives it the name SQL_STMT, as follows:
DECLARE CURSOR defines a cursor by giving it a name and associating it with a specific query. When declaring a cursor for static queries, you use the following syntax:
When declaring a cursor for dynamic queries, the statement name given to the dynamic query by PREPARE is substituted for the static query. In our example, DECLARE CURSOR defines a cursor named EMP_CURSOR and associates it with SQL_STMT, as follows:
Note: You must declare a cursor for all Dynamic SQL statements, not just queries. For non-query statements, opening the cursor executes the statement. |
DESCRIBE BIND VARIABLES fills in fields in a bind descriptor that describe the bind variables in the SQL statement. In our example, DESCRIBE fills in a bind descriptor named BNDDSC. The DESCRIBE statement is
Note that BNDDSC must not be prefixed with a colon.
The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement but precede the OPEN statement.
Figure 5-5 shows the bind descriptor in our example after the DESCRIBE. Notice that DESCRIBE has set SQLDFND to the actual number of input bind variables found in the query's WHERE clause.
Next, you must test the actual number of bind variables found by DESCRIBE, as follows:
Your program must get values for any bind variables found in the SQL statement. In our example, a value must be assigned to the placeholder BONUS in the query's WHERE clause. So, you prompt the user for the value, and then process it as follows:
Assuming that the user supplied a value of 625 for BONUS, Figure 5-6 shows the resulting bind descriptor.
The OPEN statement used for dynamic queries is similar to that used for static queries except that the cursor is associated with a bind descriptor. Values determined at run time and stored in the bind descriptor are used to evaluate the query and identify its active set.
In our example, OPEN associates EMP_CURSOR with BNDDSC, as follows:
Remember, BNDDSC must not be prefixed with a colon.
The OPEN executes the query, identifies its active set, and positions the cursor at the first row.
The DESCRIBE SELECT LIST statement must follow the OPEN statement but precede the FETCH statement.
DESCRIBE SELECT LIST fills in a select descriptor to hold descriptions of items in the query's select list. In our example, DESCRIBE fills in a select descriptor named SELDSC, as follows:
SELDSC must not be prefixed with a colon.
Accessing the data dictionary, DESCRIBE sets the length and datatype of each select-list item.
shows the select descriptor in our example after the DESCRIBE. Notice that DESCRIBE has set SQLDFND to the actual number of items found in the query's select list.
Also notice that the NUMBER lengths in the second and third SQLDVLN elements are not usable yet. For select-list items defined as NUMBER, you should use the library procedure SQLPRC to extract precision and scale, as explained in the next section.
Figure 5-7 Select Descriptor After the DESCRIBE
First you must check the SELDSC.SQLDFND variable that was set by the DESCRIBE statement. If it is negative, too many select-list items were described. If it is not, set SQLDNUM to the number of select-list items described, as follows:
In our example, before FETCHing the select-list values, you reset some length elements for display purposes. You also reset the datatype value to avoid dealing with Oracle datatypes.
shows the resulting select descriptor. Notice that the lengths for the buffers that will hold the EMPNO and COMM fields are set to 6 and 9. These values were set in the preceding DO-loop from the EMP table column lengths of 4 and 7 by the statement that adds 2 to PRECISION (for possible minus sign and decimal point). Notice also that the datatypes are set to 1 (VARCHAR2).
Figure 5-8 Select Descriptor Before the FETCH
Note: When the datatype code returned on a DESCRIBE is 2 (Oracle internal number) it must be coerced to a PL/1 type that a NUMBER can be converted to; this does not have to be CHARACTER. You could also coerce a NUMBER to a PL/1 FLOAT, in which case you would put the datatype code number 4 in the SQLDVTYP element, and put the length (size of a PL/1 float in bytes) in the SQLDVLN element. |
FETCH returns a row from the active set, stores select-list values in the select descriptor, and advances the cursor to the next row in the active set. If there are no more rows, FETCH sets SQLCA.SQLCODE, the SQLCODE variable, or the SQLSTATE variable to the "no data found" Oracle error code. In our example, FETCH returns the values of columns ENAME, EMPNO, and COMM to the data buffers pointed to by the SQLDV elements:
shows the select descriptor in our example after the FETCH. Notice that Oracle has stored the column and indicator-variable values in the data buffers pointed to by the descriptor.
Figure 5-9 Select Descriptor After the FETCH
After the FETCH, your program can scan the select descriptor for the select-list values returned by FETCH and process them. In our example, values for columns ENAME, EMPNO, and COMM can be processed.
Note how Oracle converts these values into the SEL_DV data buffers. The select-list value 'MARTIN' is from an Oracle VARCHAR2 column. It is left justified in the 10-byte field of SEL_DV(1).
The EMPNO value is a NUMBER(4) in the Oracle table. The program adds 2 to this (for decimal point and possible sign), resulting in a length of 6. Since EMPNO is a NUMBER, the value '7654' is right justified in a 6-byte field in the output buffer.
The COMM column has a length of 7. The program adds 2 (for decimal point and sign) for a total length of 9. The value '482.50' is right justified on conversion into the 9-byte field of SEL_DV(3).
To use input or output host arrays with Method 4, you must use the optional FOR clause of the EXECUTE statement to tell Oracle the size of the host array. (For more information about the FOR clause, see Chapter 8 of the Oracle Database Programmer's Guide to the Oracle Precompilers.)
First, you set up a descriptor for the host arrays. Set each SQLDV element to point to the start of the array, the SQLDVLN element to contain the length of each member of the array, and the SQLDVTYP element to contain the type of the members.
Then, you use a FOR clause in the EXECUTE or FETCH statement (whichever is appropriate) to tell Oracle the number of array elements you want to process. This is necessary because Oracle has no other way of knowing the size of your host array. Note that EXECUTE can be used for non-queries with Method 4. In the following program, three input host arrays are used to add data to the emp table:
This section presents a complete program that illustrates the steps required to use Dynamic SQL Method 4. These steps were outlined in the "Basic Steps" section earlier in this chapter, and were discussed in greater detail in the sections following.
In this demo program, each step as outlined in "The Basic Steps" section earlier in this chapter is noted in comments in the source code. (Note that because of the block structure of PL/1, the steps do not follow in order.)
This program is available online as SAMPLE10.PPL.
This appendix lists differences between Pro*PL/1 precompiler release 1.5 and 1.6. Each feature modification is followed by one or more references to the relevant section(s) in this manual. The last entry for each feature refers to the section with the main description of that feature.
Configuration files
DBMS Option
INLINE option
MODE Option
sqlglm()
"Getting the Full Text of Error Messages"
SQLSTATE variable
Some details of Pro*PL/1 programming vary from system to system. So, occasionally you are referred to the Oracle Database Installation Guide for your system. For convenience, this appendix collects all these external references to system-specific information.
 Copyright © 1994, 2009, Oracle and/or its affiliates. All rights reserved. |