User's Guide
11g Release 2 (11.2)
E12071-02
September 2009
Oracle Database Gateway for APPC User's Guide, 11g Release 2 (11.2)
E12071-02
Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.
Primary Author: Maitreyee Chaliha
Contributor: Vira Goorah, Govind Lakkoju, Peter Wong, Juan Pablo Ahues-Vasquez, Peter Castro, and Charles Benet
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
The Oracle Database Gateway for APPC provides Oracle applications seamless access to virtually any APPC-enabled system, including IBM mainframe data and services through Remote Procedure Call (RPC) processing.
Read this guide if you are responsible for tasks such as:
Before using this guide to administer the gateway, you should understand the fundamentals of your operating system and Oracle Database Gateways.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html
, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html
.
The Oracle Database Gateway for APPC User's Guide is included as part of your product shipment. Also included is:
You might also need Oracle Database 11g and Oracle Net documentation. The following is a useful list of the Oracle publications that may be referenced in this book:
Refer to the Oracle Technical Publications Catalog and Price Guide for a complete list of documentation provided for Oracle products.
Examples in this guide use the compiler name parameter value IBMVSCOBOLII
, which represents the IBM VS COBOL II compiler. Although the IBM VS COBOL II compiler is no longer supported, the string IBMVSCOBOLII
should still be used and the supported COBOL compiler will be called.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
Documentation for Oracle Database Gateway for APPC	
Documentation for this product includes this guide and the Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows and the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64.	
To access the documentation in HTML and PDF formats, use a browser to open the top level of the Gateway Documentation Library included on your installation media. This level contains links to product and Windows-specific documentation.	
Oracle Product Documentation	
Oracle Database11g product documentation is on the Oracle Database 11g Platform-Specific Documentation Library included on your installation media. Instructions for accessing and installing the documents on the library are found in the README file on the top level directory of the installation media.	
Oracle's corporate web page is at the following address:	
Oracle offers a wide range of services to help facilitate corporate system solutions, including Oracle Education courses, Oracle Consulting services, and Oracle Support Services from the Web site. In addition, Oracle provides free trial software, updates on Oracle products and service, and technical brochures and data sheets.	
Oracle Support Services	
Technical Support registration and contact information worldwide is available at the following address:	
At Oracle's support site, you will find templates to help you prepare information about your problem before you call so that you may be helped more quickly. You will also need your CSI number (if applicable) or complete contact details, including any special project information.	
Oracle Technology Network	
OTN delivers all product documentation, as well as technical papers, code samples, self-service developer support, and Oracle's key developer products to enable rapid development and deployment of applications built on Oracle technology.	
Register with the Oracle Technology Network (OTN) at:	
All Oracle product documentation can be found at:	
My Oracle Support	
My Oracle Support is Oracle's web service for technical information. Members of My Oracle Support can search for updates, alerts, patches, and other information about products, releases, and operating systems, or set preferences to be notified automatically of new information. My Oracle Support offers a variety of services to assist in setting up and administrating Oracle products, including procedures, scripts, commentary, and tuning and configuration best-practices bulletins. Please logon to My Oracle Support before installing or administrating your product to search for up to date information about Oracle Database 11g Release 2 (11.2) for Microsoft Windows (32-Bit).	
In addition, My Oracle Support offers forums for information sharing among Oracle customers, and direct communication with Oracle Support Services. My Oracle Support is available to Product Support Customers at no extra cost. Sign up for free membership for this service at the following site:	
Use your Support Access Code (SAC) number to register.	
Oracle Products and Other Documentation	
For U.S.A. customers, the Oracle Store is at:	
Links to Stores in other countries are provided from this site.	
Customer Service	
Oracle Support Services contacts are listed at:	
Support for Hearing and Speech Impaired Customers	
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week.	
1.800.446.2398	
1.800.464.2330	
Education and Training	
Training information and worldwide schedules are available from:	
The Oracle Database Gateway for APPC enables users to initiate transaction program execution on remote online transaction processors (OLTPs). The Oracle Database Gateway for APPC can establish connection with OLTP using the SNA communication protocol. The gateway can also use TCP/IP for IMS Connect to establish communication with IMS/TM through TCP/IP. The gateway provides Oracle applications with seamless access to IBM mainframe data and services through Remote Procedural Call (RPC) processing.	
Refer to the Oracle Database Installation Guide and to the certification matrix on the My Oracle Support Web site for the most up-to-date list of certified hardware platforms and operating system versions. The My Oracle Support Web site can be found at:	
This chapter describes the architecture, uses, and features of the Oracle Database Gateway for APPC.	
This chapter contains the following sections:	
The Oracle Database Gateway for APPC extends the RPC facilities available with the Oracle database. The gateway enables any client application to use PL/SQL to request execution of a remote transaction program (RTP) residing on a host. The gateway provides RPC processing to systems using the SNA Advanced Program-to-Program Communication (APPC) protocol and to IMS/TM systems using TCP/IP support for IMS Connect. This architecture allows efficient access to data and transactions available on the IBM mainframe and IMS, respectively.	
The gateway requires no Oracle software on the remote host system. Thus, the gateway uses existing transactions with little or no programming effort on the remote host.	
For gateways using SNA only:	
The use of a generic and standard protocol, APPC, allows the gateway to access numerous systems. The gateway can communicate with virtually any APPC-enabled system, including IBM Corporation's CICS on any platform and IBM Corporation's IMS and APPC/MVS. These transaction monitors provide access to a broad range of systems, allowing the gateway to access many datastores, including VSAM, DB2 (static SQL), IMS, and others.	
The gateway can access any application capable of using the CPI-C API, either directly or through a TP monitor such as CICS.	
The Oracle Database Gateway for APPC provides the following benefits:	
The gateway is optimized so that remote execution of a program is achieved with minimum network traffic. The interface to the gateway is an optimized PL/SQL stored procedure specification (called the TIP or transaction interface package) precompiled in the Oracle database. Because there are no additional software layers on the remote host, overhead occurs only when your program executes.	
Client applications need not be operating system-specific. For example, your application can call a program in a CICS Transaction Server for z/OS. If you move the program to a CICS region on AIX, then you need not change the application.	
Users calling applications that execute a remote transaction program are unaware that a request is sent to a host.	
You can use the gateway to interface with existing procedural logic or to integrate new procedural logic into an Oracle database environment.	
The integration of the Oracle database with the gateway enables the gateway to benefit from existing and future Oracle database features. For example, the gateway can be called from an Oracle stored procedure or database trigger.	
The gateway and the Oracle database allow remote transfer updates and Oracle database updates to be performed in a coordinated fashion.	
The gateway supports any tool or application that supports PL/SQL.	
The Oracle Database Gateway for APPC provides a powerful development environment, including:	
The gateway provides site autonomy, allowing you to do such things as authenticate users. It also provides role-based security compatible with any security package running on your mainframe computer.	
This release of the gateway includes TCP/IP support for IMS Connect, giving users a choice of whether to use an SNA or TCP/IP communication protocol. IMS Connect is an IBM product which allows TCP/IP clients to trigger execution of IMS transactions. The gateway can use a TCP/IP communication protocol to access IMS Connect, which triggers execution of IMS transactions. There is no SNA involvement with this configuration.	
Related to this feature of the gateway is:	
The following terms and definitions are used throughout this guide:	
This file is known as initsid.ora	
and it contains parameters that govern the operation of the gateway. If you are using the SNA protocol, refer to Appendix A, "Gateway Initialization Parameters for SNA Protocol" in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows for more information. If your protocol is TCP/IP, refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.	
The Oracle Database Gateway for APPC provides prebuilt remote procedures. In general, the following three remote procedures are used:	
PGAINIT	
, which initializes transactions PGAXFER	
, which transfers data PGATERM	
, which terminates transactions Refer to Appendix B, "Gateway RPC Interface" in this guide and to "Remote Procedural Call Functions" in Chapter 1 of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows for more information about gateway remote procedures.	
dg4pwd	
is a utility which encrypts passwords that are normally stored in the gateway initialization file. Passwords are stored in an encrypted form in the password file, making the information more secure. Refer to "Passwords in the Gateway Initialization File" in the security requirements chapter of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 and Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows for detailed information about how the dg4pwd	
utility works.	
This tool is applicable only when the gateway is using TCP/IP support for IMS Connect. Its function is to map SNA parameters (such as Side Profile Name) to TCP/IP parameters (such as OLTP host name, IMS Connect port number and IMS destination ID).	
PGA (Procedural Gateway Administration)	
PGA is a general reference within this guide to all or most components comprising the Oracle Database Gateway for APPC. This term is used when references to a specific product or component are too narrow.	
PGDL (Procedural Gateway Definition Language)	
PGDL is the collection of statements used to define transactions and data to the PGAU.	
PL/SQL Stored Procedure Specification (PL/SQL package)	
This is a precompiled PL/SQL procedure that is stored in Oracle database.	
UTL_RAW PL/SQL Package (the UTL_RAW Functions)	
This component of the gateway represents a series of data conversion functions for PL/SQL RAW variables and remote host data. The types of conversions performed depend on the language of the remote host data. Refer to Appendix D, "Datatype Conversions" in this guide for more information.	
UTL_PG PL/SQL Package (the UTL_PG Functions)	
This component of the gateway represents a series of COBOL numeric data conversion functions. Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values" in Appendix C of this guide for supported numeric datatype conversions.	
This is any Oracle database instance that communicates with the gateway for purposes of performing RPCs to execute RTP. The Oracle database can be on the same system as the gateway or on a different system. If it is on a different system, then Oracle Net is required on both systems. Refer to Figure 1-2, "Gateway Architecture Featuring SNA or TCP/IP Protocol" for a view of the gateway architecture.	
OLTP (Online Transaction Processor)	
OLTP is any of a number of online transaction processors available from other vendors, including CICS Transaction Server for z/OS and IMS/TM.	
PGAU (Procedural Gateway Administration Utility)	
PGAU is the tool that is used to define and generate PL/SQL transaction interface packages (TIPs). Refer to Chapter 2, "Procedural Gateway Administration Utility" in this guide for more information about PGAU.	
PG DD (Procedural Gateway Data Dictionary)	
This component of the gateway is a repository of remote host transaction definitions and data definitions. PGAU accesses definitions in the PG DD when generating TIPs. The PG DD has datatype dependencies because it supports the PGAU and is not intended to be directly accessed by the customer. Refer to Appendix A, "Database Gateway for APPC Data Dictionary" in this guide for a list of PG DD tables.	
RPC is a programming call that executes program logic on one system in response to a request from another system. Refer to "Gateway Remote Procedure" in Appendix C of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows , and to Appendix B, "Gateway RPC Interface" in this guide for more information.	
RTP (Remote Transaction Program)	
A remote transaction program is a customer-written transaction, running under the control of an OLTP, which the user invokes remotely using a PL/SQL procedure. To execute a remote transaction program through the gateway, you must use RPC to execute a PL/SQL program to call the gateway functions.	
TIP (Transaction Interface Package)	
A TIP is an Oracle PL/SQL package that exists between your application and the remote transaction program. The transaction interface package, or TIP, is a set of PL/SQL stored procedures that invoke the RTP through the gateway. TIPs perform the conversion and reformatting of remote host data using PL/SQL and UTL_RAW/UTL_PG	
functions.	
Figure 1-1 illustrates where the terminology discussed in the preceding sections applies to the gateway's architecture.	
The following sample files and examples are referred to for illustration purposes throughout this guide. There are different example and sample files for a gateway using the SNA protocol than for a gateway using TCP/IP for IMS Connect.	
Examples and Sample Files for Gateway Using SNA	
For gateways using the SNA communication protocol, this guide uses a CICS-DB2 inquiry as an example. Transaction Interface Packages (TIPs) pgadb2i.pkb	
and pgadb2i.pkh	
send an employee number, empno	
, to a DB2 application and receive an employee record, emprec	
.	
The CICS-DB2 inquiry sample and its associated PGAU commands are also available in the %ORACLE_HOME%\dg4appc\demo\CICS	
directory on Windows platform and $ORACLE_HOME/dg4appc/demo/CICS	
directory on UNIX platforms. The sample CICS-DB2 inquiry used as an example in this chapter is in files pgadb2i.pkh	
and pgadb2i.pkb	
. Refer to the README.doc	
file in the same directory for information about installing and using the samples. It can be found in the %ORACLE_HOME%\dg4appc\demo\CICS	
directory for Windows and $ORACLE_HOME/dg4appc/demo/CICS	
directory for UNIX.	
Examples and Sample Files for Gateway Using TCP/IP	
If your gateway is using the TCP/IP communication protocol, this guide uses an IMS inquiry as an example. Transaction Interface Packages (TIPs) pgtflip.pkh	
and pgtflip.pkb	
send input to IMS, through IMS Connect, and receive the flipped input as the output.	
The IMS inquiry sample (FLIP) and its associated PGAU commands are located in the %ORACLE_HOME%\dg4appc\demo\IMS	
directory for Windows and $ORACLE_HOME/dg4appc/demo/IMS	
directory for UNIX. The sample IMS inquiry used as an example for a gateway using TCP/IP is located in files pgtflip.pkh	
and pgtflip.pkb	
.	
Refer to the README.doc	
file for more information about installing and using other IMS samples. It can be found in the %ORACLE_HOME%\dg4appc\demo\IMS	
directory for Windows and $ORACLE_HOME/dg4appc/demo/IMS	
directory for UNIX.	
The architecture of Oracle Database Gateway for APPC consists of several components:	
Refer to the configuration chapter corresponding to your communications protocol in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windowsfor a description of the various methods for establishing the gateway-Oracle database relationship.	
The Oracle database can also be used for non-gateway applications.	
Oracle Database Gateway for APPC must be installed on a server that can run the required version of the operating system.	
The OLTP must be accessible from the gateway using your SNA or TCP/IP communication protocol. Multiple Oracle databases can access the same gateway. A single system gateway installation can be configured to access more than one OLTP.	
Figure 1-2 illustrates the architecture of the Oracle Database Gateway for APPC using SNA or TCP/IP, as described in the previous section.	
All the communication between the user or client program and the gateway is handled through a TIP which executes on an Oracle database. The TIP is a standard PL/SQL package that provides the following functions:	
The PGAU, provided with the gateway, automatically generates the TIP specification.	
The gateway is identified to the Oracle database using a database link. The database link is the same construct used to identify other Oracle databases. The functions in the gateway are referenced in PL/SQL as:	
The Oracle Database Gateway for APPC provides a set of functions that are called by the client through RPC. These functions direct the gateway to initiate, transfer data with, and terminate RTP running under an OLTP on another system.	
Table 1-1 lists the RPC functions and the correlating commands that are invoked in the gateway and remote host.	
Table 1-1 RPC Functions and Commands in the Gateway and Remote Host	
Applications	Oracle TIP
---	---
Initiate program	
Exchange data	
Terminate program	
The following sections describe how a TIP works by first establishing a connection to the remote host, then exchanging data from the target transaction program and finally, terminating a conversation.	
The TIP initiates a connection to the remote host using one of the gateway functions, PGAINIT	
.	
When the communication protocol is SNA: PGAINIT	
provides, as input, the required SNA parameters to start a conversation with the target transaction program. These parameters are sent across the SNA network, which returns a conversation identifier to PGAINIT	
. Future calls to the target program use the conversation identifier as an input parameter.	
When the communication protocol is TCP/IP: PGAINIT	
provides, as input, the required TCP/IP parameters.These parameters are sent across the TCP/IP network to start the conversation with the target transaction program. The TCP/IP network returns a socket file descriptor to PGAINIT	
. Future calls, such as PGAXFER	
and PGATERM	
, use this same socket file descriptor as an input parameter.	
After the conversation is established, a database gateway function called PGAXFER	
can exchange data in the form of input and output variables. PGAXFER	
sends and receives buffers to and from the target transaction program. The gateway sees a buffer as only a RAW stream of bytes. The TIP that resides in the Oracle database is responsible for converting PL/SQL datatypes of the application to RAW before sending the buffer to the gateway. It is also responsible for converting RAW to PL/SQL datatypes before returning the results to the application.	
When communication with the remote program is complete, the gateway function PGATERM	
terminates the conversation between the gateway and the remote host.	
When the communication protocol is SNA: PGATERM	
uses the conversation identifier as an input parameter to request conversation termination.	
When the communication protocol is TCP/IP: PGATERM	
uses the socket file descriptor for TCP/IP as an input parameter to request conversation termination.	
Note: At this point, if your communication protocol is SNA, then proceed to the following section, Section 1.8, "Overview of a Gateway Using SNA".If your gateway communication protocol is TCP/IP, then proceed to Section 1.9, "Overview of a Gateway Using TCP/IP".	
If you are using the SNA communication protocol, read the following sections to develop an understanding of how the gateway communicates with the Oracle database and with the mainframe, as well as transaction types unique to your gateway and writing TIPs.	
The Oracle Database Gateway for APPC supports three types of transactions that read data from and write data to remote host systems:	
In a one-shot transaction, the application starts the connection, exchanges data, and terminates the connection, all in a single call.	
In a persistent transaction, multiple calls to exchange data with the remote transaction can be executed before terminating the conversation.	
In a multi-conversational transaction, the database gateway server can be used to exchange multiple records in one call to the remote transaction program.	
Refer to "Remote Host Transaction Types" in Chapter 4, "Client Application Development (SNA Only)" of this guide for more information about transaction types.	
The following list demonstrates examples of the power of the Oracle Database Gateway for APPC:	
This section describes simple communication between the mainframe and the Oracle database on a gateway using the SNA communication protocol. The Oracle Database Gateway for APPC lets you write your own procedures to begin transferring information between the Oracle database and a variety of programs on an IBM mainframe, including IBM CICS, IMS, and APPC/MVS.	
For an illustration of the communications function of the Oracle Database Gateway for APPC, refer to %ORACLE_HOME%\dg4appc\demo\CICS\pgacics.sql	
on Microsoft Windows or $ORACLE_HOME/dg4appc/demo/CICS/pgacics.sql	
on UNIX based platforms. This is a sample communication between the Oracle database and CICS Transaction Server for z/OS. Executing this simple PL/SQL procedure pgacics.sql	
, causes the Oracle database to invoke the database gateway, which uses SNA to converse with the FLIP	
transaction in CICS. These steps are described in detail in Section 1.8.2.1, "Steps to Communicate Between Gateway and Mainframe Using SNA". Note that you will already have compiled and linked the stored procedure when you configured the gateway.	
The following steps describe the Windows-to-mainframe communications process illustrated in Figure 1-3, "Communication Between the Oracle Database and the Mainframe, Using SNA" when your communication protocol is SNA to communicate between the gateway and the mainframe:	
pgacics	
. This invokes the PL/SQL stored procedure in the Oracle database. For Microsoft Windows:	
For UNIX Based platforms:	
pgacics	
PL/SQL stored procedure will start up the gateway. The gateway will start up communication with CICS Transaction Server for z/OS through SNA and will call FLIP	
. FLIP	
processes the input, generates the output and sends the output back to the database gateway. Finally, the database gateway will send the output back to the PL/SQL stored procedure in the Oracle database. The result is displayed in SQL*Plus:	
Figure 1-3, "Communication Between the Oracle Database and the Mainframe, Using SNA" illustrates the communications process described in steps 0 through 4.	
Most transactions using SNA communication protocol are much larger and more complex than the sample pgacics.sql	
file referred to in Figure 1-3, "Communication Between the Oracle Database and the Mainframe, Using SNA". Additionally, communication with a normal-sized RTP would require you to create an extremely long PL/SQL file. PGAU function generates the PL/SQL procedure for you.	
The following is a brief description of the four steps necessary for you to generate a TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure, and refer to Chapter 2, "Procedural Gateway Administration Utility" for more information about PGAU.	
All parameter names in this section are taken from a file called pgadb2i.ctl	
in the %ORACLE_HOME%\pga4appc\demo\CICS	
directory on Microsoft Windows or in the $ORACLE_HOME/pga4appc/demo/CICS	
directory on UNIX Based systems.	
Follow these steps to write a TIP.	
The user writes the control files. The control file has four main types of PGAU commands:	
DEFINE DATA	
. This is used to define input and output fields, using COBOL data definitions. DEFINE CALL	
. This is used to define PL/SQL functions calls to be generated as part of the package. DEFINE TRANSACTION	
. This is used to group the preceding functions and specify other parameters on which the TIP depends. GENERATE	
. This is used to generate the TIP specification files from the previously stored data, call, and transaction definitions. Running the control file within PGAU will create PG DD entries for the data, call, and transaction definitions, and will generate the specification files (For example, pgadb2i.pkh	
and pgadb2i.pkb	
):	
For Microsoft Windows:	
For UNIX based systems:	
Running the specification files will create the PL/SQL stored procedures. Note that the header specification file (for example, pgadb2i.pkh	
) must be run first:	
For Microsoft Windows:	
For UNIX based systems:	
The TIP is now ready for use. For convenience, it will usually be called using a driver procedure (for example, db2idriv	
). This driver will then call the individual stored procedures in the correct order. Create the driver procedure and run it:	
For Microsoft Windows:	
For UNIX based systems:	
If you are using the TCP/IP communication protocol, read the following sections to develop an understanding of how the gateway communicates with the Oracle database and with the mainframe, as well as transaction types unique to your gateway and writing TIPs.	
The Oracle Database Gateway for APPC using TCP/IP support for IMS Connect supports three types of transaction socket connections:	
The socket connection lasts across a single transaction.	
The socket connection lasts across multiple transactions.	
The socket connection lasts across a single exchange consisting of one input and one output.	
Note: Do not use the nonpersistent socket type if you plan to implement conversational transactions because multiple connections and disconnections will occur.	
Refer to the section about pg4tcpmap	
commands in Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" of this guide for more information about the function and use of these parameters.	
You can initiate an IMS/TM transaction that executes static SQL in DB2. This illustrates the power of the Oracle Database Gateway for APPC's feature supporting TCP/IP for IMS Connect.	
This section describes simple communication between IMS and the Oracle database whenTCP/IP for IMS Connect is being used as the communication protocol between the gateway and the remote host (IMS). The Oracle Database Gateway for APPC lets you write your own procedures to begin transferring information between the Oracle database and I/O PCB programs on IMS.	
For an illustration of the communications function of the gateway using TCP/IP for IMS Connect, refer to the %ORACLE_HOME%\dg4appc\demo\IMS\pgaims.sql	
file on Microsoft Windows or $ORACLE_HOME/dg4appc/demo/IMS/pgaims.sql	
on UNIX based systems.	
Executing the simple PL/SQL procedure pgaims.sql	
causes the Oracle database to call the gateway, which uses TCP/IP to converse with the sample transaction FLIP	
in IMS. The communication steps that take place when you execute the PL/SQL procedure are described in detail in Section 1.9.2.2, "Steps to Communication Between the Gateway and IMS, Using TCP/IP". Note that you will already have compiled and linked the stored procedure when you configured the gateway.	
If your gateway is using TCP/IP support for IMS Connect, then you must use the pg4tcpmap	
tool to create the required mapping between PGAINIT	
parameters and the target system network address information. The pg4tcpmap	
tool maps the Side Profile Name specified in a DEFINE TRANSACTION	
to TCP/IP and IMS Connect attributes, such as port number, IP address (host name) and IMS subsystem ID. The TCP/IP parameters are used to start a conversation with the target transaction program.	
The pg4tcpmap	
tool must be run in order to populate the PGA_TCP_IMSC	
table before executing any TIPs which rely on TPC/IP support for IMS Connect.	
pg4tcpmap	
commands to populate the PGA_TCP_IMSC	
table. Chapter 6 also explains the content of the PGA_TCP_IMSC	
table and an example of how to use the table. pg4tcpmap	
execution is located in Chapter 8, "Troubleshooting" in this guide. The following steps describe the communications process, as illustrated in Figure 1-4 when your communication protocol is TCP/IP:	
pgaims.sql	
. This invokes the PL/SQL stored procedure in the Oracle database. For Microsoft Windows:	
For UNIX based systems:	
The pgaims.sql	
stored procedure will start up the gateway.	
PGA_TCP_IMSC	
). The mapping table will map the information so that it will have the host name (TCP/IP address) and the port number. FLIP	
through IMS. FLIP	
processes the input, generates the output, and sends the output back to the gateway. Finally, the gateway will send the output back to the PL/SQL stored procedure in the Oracle database. The result is displayed in SQL*Plus:	
Figure 1-4, "Communication Between Oracle Database and Mainframe, Using TCP/IP" illustrates the communications process described in the previous Steps 0 through 5.	
Most transactions are much larger and more complex than the sample pgaims.sql	
file referred to in Figure 1-4, "Communication Between Oracle Database and Mainframe, Using TCP/IP". Additionally, communication with a normal-sized RTP (remote transaction program) would require you to create an extremely long PL/SQL file. Oracle Database Gateway for APPC's TIP function generates the PL/SQL procedure for you.	
The following is a brief description of the four steps necessary for you to generate a TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure, and refer to Chapter 2, "Procedural Gateway Administration Utility" for more information about PGAU.	
All parameter names in this section are taken from a file called pgtflip.ctl	
in the %ORACLE_HOME%\pga4appc\demo\IMS	
directory on Microsoft Windows or $ORACLE_HOME/pga4appc/demo/IMS	
directory on UNIX based systems.	
Follow these steps to write a TIP.	
The user writes the control files. The control file has four main types of PGAU commands:	
DEFINE DATA	
. This is used to define input and output fields, using COBOL data definitions. DEFINE CALL	
. This is used to define PL/SQL functions calls to be generated as part of the package. DEFINE TRANSACTION	
. This is used to group the preceding functions and specify other parameters on which the TIP depends. Note: On a gateway using TCP/IP, the side profile name value is actually the TCP/IP unique name that was defined when the user specified the value, host name, port number and many other IMS Connect values during configuration of the network.	
GENERATE	
. This is used to generate the TIP specification files from the previously stored data, call, and transaction definitions. Running the control file within PGAU will create PG DD entries for the data, call, and transaction definitions and will generate the specification files (for example, pgtflip.pkh	
and pgtflip.pkb	
):	
For Microsoft Windows:	
For UNIX based systems:	
Running the specification files will create the PL/SQL stored procedures. Note that the header specification file (for example, pgtflip.pkh	
) must be run first:	
For Microsoft Windows:	
For UNIX based systems:	
The TIP is now ready for use. For convenience, it will usually be called using a driver procedure (for example, pgtflipd	
). This driver will then call the individual stored procedures in the correct order. Create the driver procedure and run it:	
For Microsoft Windows:	
For UNIX based system:	
The Procedural Gateway Administration Utility (PGAU) is a utility that assists the PGA administrator or user to define the data which is to be exchanged with remote transaction programs. It generates the PL/SQL Transaction Interface Packages (TIPs) discussed in Chapter 3, "Creating a TIP", Appendix E, "Tip Internals" and, depending upon your communication protocol, either Chapter 4, "Client Application Development (SNA Only)" or Chapter 7, "Client Application Development (TCP/IP Only)".	
This chapter contains the following sections:	
Note: If you have existing TIPs that were generated previously on a gateway using the SNA protocol and you want to utilize the new TCP/IP feature, then the TIPs will have to be regenerated by PGAU with mandatoryNLS_LANGUAGE and Side Profile Settings. Specify the appropriate ASCII character set in the DEFINE TRANSACTION command. This is due to the fact that the gateway assumes that the appropriate "user exit" in IMS Connect is being used, which would translate between the appropriate ASCII and EBCDIC character sets.	
PGAU maintains a data dictionary, PG DD, which is a collection of tables in an Oracle database. These tables hold the definitions of the remote transaction data and how that data is to be exchanged with the remote transaction program. Refer to "Ensuring TIP and Remote Transaction Program Correspondence" for a discussion of the correlation between TIPs and their respective remote transaction programs. The PG DD contents define this correlation.	
The PGA administrator or user defines the correlation between TIPs and the remote transaction program using the following PGAU commands (also called "statements"):	
PGAU DEFINE DATA	
statements, which describe the data to be exchanged.	
PGAU DEFINE CALL	
statements, which describe the exchange sequences.	
DEFINE TRANSACTION	
statements, which group the preceding CALL	
and DATA	
commands together and describe certain aspects unique to the remote transaction program, such as its network name or location. PGAU GENERATE	
statement, which the PGA administrator or user uses to specify and create the TIP specifications, after the TIP/transaction correlation has been defined in the PG DD. Additional PGAU commands needed to alter and delete definitions in the PG DD are described in "PGAU Commands" later in this chapter.	
The PGAU commands are known collectively as Procedural Gateway Definition Language (PGDL). Any references to PGDL are to the collection of PGAU commands defined in this chapter.	
PGAU provides editing and spooling facilities and the ability to issue SQL commands.	
Caution: Do not use PGAU instead of SQL*Plus for general database administration.	
Alternatively, PGAU commands can be supplied in a control file. The control file contains one or more PGAU commands for manipulating the PG DD or generating TIP specifications.	
PGAU issues status messages on each operation. The message text is provided through Globalization Support message support. PGAU processes each command in sequence. An error on a single command causes PGAU to skip that command.	
To run PGAU, the PG DD tables must already have been created. Refer to the gateway configuration chapters corresponding to your communications protocol in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.	
The following sections provide information on COMMIT/ROLLBACK	
processing.	
PGAU never issues COMMIT	
commands. As the user, it is your responsibility to COMMIT	
PG DD changes when all the changes are implemented. Otherwise Oracle issues a COMMIT	
command by default when you exit the PGAU session. If PG DD changes are not to be committed, you must run a ROLLBACK	
command before exiting.	
PGAU sets a savepoint at the beginning of each PGAU command that alters the PG DD and at the beginning of a PGAU GROUP	
. PGAU rolls back to the savepoint upon any PGAU command or group failure.	
You can code COMMIT	
or ROLLBACK	
commands within PGAU scripts, or interactively in PGAU, but not within a GROUP	
.	
Neither COMMIT	
nor ROLLBACK	
is issued for PGAU GENERATE	
or REPORT	
commands.	
For information about grouping PGAU commands together to roll back changes in case of failure, refer to the discussion of the PGAU "GROUP" command later in this chapter.	
Before you can invoke PGAU, your Oracle database should already be set up. If it is not, refer to the chapter on configuring your Oracle Database Gateway for APPC, in the Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows or Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64.	
Before executing PGAU, you must set the ORACLE_HOME	
environment variable to the directory into which the gateway server was installed.	
If you want to receive PGAU messages in a language other than English, set the LANGUAGE	
environment variable to the appropriate value.	
PGAU is invoked by entering the pgau	
command. You can run prepared scripts of PGAU commands directly from the operating system prompt by specifying a command string on the command line using the following syntax:	
For Microsoft Windows:	
For UNIX based systems:	
The default extension is .sql	
. Use the last form if the command filename contains non-alphanumeric characters.	
To perform PG DD maintenance and PL/SQL package generation, you must connect to the Oracle database from PGAU as user PGAADMIN	
, using the CONNECT	
command. The "PGAU Commands" section discusses how to use the "CONNECT" command.	
This version of PGAU supports the definition of remote transaction data in COBOL, entered interactively or in a file. File input is supported for the DEFINE	
and REDEFINE DATA	
commands, and standard COBOL data division macros or "copybooks" can be supplied.	
PGAU and the PG DD support different versions of user data and remote transaction definitions. This facilitates alteration and testing of data formats and transactions without affecting production usage.	
Multiple versions of any data or transaction definitions might exist. You must ensure that versions stored and used in the PG DD are synchronized with the remote transactions. Neither the gateway, PGAU, nor generated TIPs provide this synchronization, but they will issue messages as error conditions are detected.	
Data definitions must exist before being referenced by call definitions. Call definitions must exist before being referenced by transaction definitions.	
Note: It is your responsibility to ensure that the data transaction definition versions that are stored and used in the PG DD are synchronized with the remote transactions. The gateway, PGAU and generated TIPs do not provide this synchronization, but issue messages as error conditions are detected.	
The general process for defining and testing a TIP for a given transaction is as follows:	
FUNCTION	
calls to be generated as part of the PL/SQL package. TRANSACTION	
, CALL	
, and DATA	
definitions. Refer to Chapter 3, "Creating a TIP" for more information about TIPs.	
Definition names are unique identifiers that you designate through PGAU. The name is a string of 1 to 30 bytes. If punctuation or white space is included, the name must be specified within double quotes.	
Names are assumed to be unique within the PG DD, except when duplicate names are intentionally distinguished by a unique version number. It is your responsibility to ensure name uniqueness.	
Valid characters for PG DD definition names are:	
Note that unless defaults are overridden, transaction definition names might be PL/SQL package names, and transaction call names might be PL/SQL procedure names. Therefore, choose names that are syntactically correct for PL/SQL, making certain that they are also unique names within that system. As the user, it is your responsibility to ensure PL/SQL name compatibility.	
The PG Data Dictionary tables contain the descriptions of transactions and data structures. There might be more than one version of a definition. Old versions are retained indefinitely.	
In all PG DD operations, a definition or package is referred to by its name. That name can be qualified by a specific version number.	
All version numbers:	
Refer to Appendix A, "Database Gateway for APPC Data Dictionary" and the pgddcr8.sql	
file in the %ORACLE_HOME%\dg4appc\admin	
directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin	
directory on UNIX based systems for the specific names of the Oracle Sequence Objects used for version number generation.	
If an explicit version number is specified, it is presumed to be the version number of an existing definition, not a new definition. Such explicit references are used when:	
If no explicit version is specified:	
MAX	
value selected from the VERSION	
column for all rows with the same definition name, not the CURRVAL	
number. NEXTVAL	
number) is assumed when a definition is being added. Version numbers might not be contiguous. Although version numbers are always increasing, multiple versions of a given definition might skip numbers. This is because the sequence object is shared for all definitions of the same type (TRANSACTION	
, CALL	
, or DATA	
), and sequence object NEXTVAL	
is not restored in event of an Oracle database transaction ROLLBACK	
. Thus, NEXTVAL	
might be assigned to a different definition before the next version of the same definition.	
Examples of valid definition names:	
No attempt is made by PGAU to synchronize versions. Although the existence of dependent items is assured at definition time, deletion is done without reference to dependencies. For example, generating a TIP requires prior definition of the transaction, which requires prior definition of the calls, which require prior definition of the data. But nothing prevents PGAU from deleting an active data definition while a call definition still references it.	
All PGAU keywords can be specified in upper or lower case and are not reserved words. Reservation is not necessary because all keywords have known spelling and appear in predictable places, and because all data is delimited by parentheses, apostrophes, quotes, or blanks.	
Note that all unquoted values specified by keywords are stored in the PG Data Dictionary in uppercase unless otherwise specified in the keyword description.	
PGAU allows you to enter Procedural Gateway Administration commands (commands), such as DEFINE	
, UNDEFINE	
, REDEFINE	
, and GENERATE	
, in addition to normal SQL commands. The SET	
and SHOW	
commands are also implemented. In addition, the PGAU commands listed in the following section are available to you.	
Purpose	
This command enables you to make a connection to PGAU. Use the CONNECT	
command to log on to an Oracle database, optionally specifying the user ID and password in addition to the Oracle instance. The CONNECT	
command has the following syntax:	
Syntax	
For Microsoft Windows:	
For UNIX based systems:	
username\password	
for Microsoft Windows and username/password	
for UNIX based systems are the usernames and passwords used to connect to PGAU,	
and	
connect-string	
specifies the service name of the remote database.	
Refer to the Oracle Database Net Services Administrator's Guide Services Administrator's Guide for more information about specifying remote databases.	
Examples	
CONNECT Usage Notes	
ORACLE_SID	
to the database SIDname	
. TNS_ADMIN	
to the full pathname of the directory in which the file tnsnames.ora	
is stored. Purpose	
This command creates a new version of the PL/SQL call definition in the PG Data Dictionary.	
Syntax	
Where Table 2-1 describes the parameters in this syntax:	
Table 2-1 DEFINE CALL Parameter Descriptions	
Examples	
Refer to "Sample PGAU DEFINE CALL Statements" in Appendix F for examples of DEFINE CALL	
commands.	
DEFINE CALL Usage Notes	
CALL	
definition is not specified and defaults to NEXTVAL	
of the Oracle Sequence Object for CALL	
. PKGCALL	
and PARMS	
can be specified in either order. Purpose	
This command creates a new version of the data definition in the PG DD.	
Syntax	
Table 2-2 describes the DEFINE DATA	
parameters:	
Table 2-2 DEFINE DATA Parameter Descriptions	
Parameter	Description
---	---
is a mandatory parameter. It is the name of the data definition to be created.	
is an optional parameter. It is the name of the PL/SQL variable associated with	
is an optional parameter. It specifies the way the TIP handles the data items when exchanged in calls with the remote transaction.	
The default value, The	
is an optional parameter. It specifies the compiler options used when compiling the data definition on the remote host. The only option currently supported is ' Refer to "DEFINE DATA Usage Notes" for further information on this option.	
is a mandatory parameter. It specifies the name of the programming language in the supplied definition. PGAU presently supports only COBOL.	
is mutually exclusive with the	
is mutually exclusive with the (Note that	
Examples	
Refer to "Sample PGAU DEFINE DATA Statements" in Appendix F for examples of DEFINE DATA	
commands.	
DEFINE DATA Usage Notes	
DATA	
definition is not specified and defaults to NEXTVAL	
of the Oracle Sequence Object for DATA	
. PLSDNAME	
, USAGE	
, and LANGUAGE	
can be specified in any order. INFILE	
("filespec"	
) is a platform-specific designation of a disk file. COMPOPTS ('TRUNC(BIN)')	
should be used only when the remote host transaction was compiled using COBOL with the TRUNC(BIN)	
compiler option specified. When this option is used, binary data items defined as PIC 9(4)	
or PIC S9(4)	
can actually contain values with 5 digits, and binary data items defined as PIC 9(9)	
or PIC S9(9)	
can actually contain values with 10 digits. Without COMPOPTS ('TRUNC(BIN)')	
, PGAU generates NUMBER(4,0)	
or NUMBER(9,0)	
fields for these data items, resulting in possible truncation of the values. When COMPOPTS ('TRUNC(BIN)')	
is specified, PGAU generates NUMBER(5,0)	
or NUMBER(10, 0)	
fields for these data items, avoiding any truncation of the values. Care must be taken when writing the client application to ensure that invalid values are not sent to the remote host transaction.	
For a PIC 9(4)	
the value must be within the range 0	
to 32767	
, for a PIC S9(4)	
the value must be within the range -32767	
to +32767	
, for a PIC 9(9)	
the value must be within the range 0	
to 2,147,483,647	
, and for a PIC S9(9)	
the value must be within the range -2,147,483,647	
to +2,147,483,647	
. COBOL always reserves the high-order bit of binary fields for a sign, so the value ranges for unsigned fields are limited to the absolute values of the value ranges for signed fields. For further information, refer to the appropriate IBM COBOL programming manuals.	
Purpose	
This command creates a new version of the transaction definition in the PG Data Dictionary.	
Syntax	
)	
]	Table 2-3 describes the DEFINE TRANSACTION
parameters:	
Table 2-3 DEFINE TRANSACTION Parameter Descriptions	
Parameter	Description
---	---
A mandatory parameter. It is the name of the transaction definition to be created. If you do not specify a package name (TIP name) in the	
A mandatory parameter. It specifies a list of previously defined calls (created with The relative position of each	
Specifies the name of the host environment for this transaction, for example,	
This parameter is optional for a gateway using SNA, but if omitted, the user must specify the parameters for This parameter is mandatory for a gateway using the TCP/IP connection. It has no comparable SNA meaning. You need to run the This name represents a group of IMS transactions with similar IMS Connect attributes. You can re-use the same name as long as they share the same IMS Connect attributes, such as subsystem ID, TIME delay or socket type. Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" for details.	
This parameter is optional on a gateway using SNA: Overrides the LUNAME within the Side Information Profile, if the Side Information Profile was specified. It specifies the SNA Logical Unit name of the transaction manager (OLTP). This is either the fully-qualified LU name, Name values can be alphanumeric with'@', '#', and'$' characters and a single period '.', to delimit the network from the LU, as in netname.luname, if fully qualified. Quoted values can contain any character, and delimited by quotes ("), or apostrophes ('). Case is preserved for all values. This parameter is not applicable when using the TCP/IP communication protocol.	
This parameter is optional on a gateway using SNA: Overrides the	
Name values can be alphanumeric with'@', '#', and'$' characters only if unquoted. Quoted values can contain any character, and delimited by quotes ("), or apostrophes ('). Case is preserved for all values. This parameter is required for a gateway using TCP/IP support for IMS Connect. It must be the IMS Transaction Name.	
This parameter is optional on a gateway using SNA: Overrides the Name values can be alphanumeric with '@', '#', and '$' characters only. Values cannot be quoted. Case is not preserved and always translated to upper case. This parameter is not applicable when using the TCP/IP communication protocol.	
This parameter is optional on a gateway using SNA: It specifies the APPC On a gateway using TCP/IP: The default of this parameter is '0', which is the only accepted value.	
This is an optional parameter. The default value is " Note that if you are using TCP/IP, make sure that you set this parameter to "american_america.us7ascii".	
This is an optional parameter. The default value is "	
This is an optional parameter. The default value is "	
Examples	
Refer to "Sample PGAU DEFINE TRANSACTION Statement" in Appendix F for examples of DEFINE TRANSACTION	
s commands.	
DEFINE TRANSACTION Usage Notes:	
NLS_LANGUAGE	
and the Oracle database's LANGUAGE	
specify default character sets to be used for conversion of all single-byte character fields for the entire transaction. These defaults can be overridden for each SBCS field by the REDEFINE DATA REMOTE_LANGUAGE	
or LOCAL_LANGUAGE	
parameters. TRANSACTION	
definition is not specified and defaults to NEXTVAL	
of the Oracle Sequence Object for TRANS	
. REMOTE_MBCS	
and LOCAL_MBCS	
specify the default multi-byte character sets to be used for conversion of all DBCS or MBCS fields for the entire transaction. This default can be overridden for each DBCS or MBCS field by the REDEFINE DATA REMOTE_LANGUAGE	
or LOCAL_LANGUAGE	
parameters. Purpose	
Use this command to describe a table, view, stored procedure, or function. If neither TABLE	
, VIEW	
, nor PROCEDURE	
are explicitly specified, the table or view with the specified name is described.	
Syntax	
The DESCRIBE	
command has the following syntax:	
Table 2-4 describes the DESCRIBE	
parameter:	
Table 2-4 DESCRIBE Parameter Descriptions	
Parameter	Description
---	---
is the tablename	
is the viewname	
is the procedurename	
Examples	
DESCRIBE Usage Notes	
Purpose	
Use this command to disconnect from an Oracle database.	
Syntax	
The DISCONNECT	
command has the following syntax:	
None	
Examples	
None	
DISCONNECT Usage Notes	
Purpose	
Use this command to execute a one-line PL/SQL statement.	
Syntax	
The EXECUTE	
command has the following syntax:	
pl/sql block	
is any valid pl/sql block. Refer to the Oracle Database PL/SQL Language Reference for more information.	
Examples	
EXECUTE Usage Notes	
Purpose	
Use this command to terminate PGAU.	
Syntax	
The EXIT	
command has the syntax:	
None	
Examples	
None	
EXIT Usage Notes	
Purpose	
A PL/SQL package is built and written to the indicated output files. The PG Data Dictionary is not updated by this command.	
Syntax	
}	
[.{bodytype}]]")Table 2-5 describes the GENERATE	
parameters:	
Table 2-5 GENERATE Parameter Descriptions	
Parameter	Description
---	---
is a mandatory parameter. It is the transaction name defined in a	
is an optional parameter. It specifies which transaction definition is to be used. The	
is an optional parameter. It specifies the name of the PL/SQL package to be created. If this operand is omitted, the package name is assumed to be the same as the transaction name.	
is an optional parameter. It specifies the Oracle database link name to the gateway server. If this operand is omitted, "PGA" is assumed to be the	
is an optional parameter. If this parameter is specified,	
is the optional directory path of the TIP specification and the TIP content documentation. It defaults to the current directory. The value must end with a backslash (\) for Microsoft Windows and a slash (/) for UNIX based systems.	
is the filename of the TIP specification and the TIP content documentation. It defaults to	
is the optional file extension of the TIP specification and defaults to	
is the optional directory path of the TIP body. It defaults to	
is the optional file name of the TIP body. It defaults to	
is the optional file extension of the TIP body and defaults to The TIP Content output path defaults to Refer to the "GENERATE Usage Notes:" for more examples, and Appendix E, "Tip Internals" for more information.	
is an optional parameter with two options,	
specifies that an internal trace of the execution of PGAU is written to output file	
Trace messages are provided as a diagnostic tool to Oracle Support Services and other Oracle representatives to assist them in diagnosing customer problems when generating TIPs. They are part of an Oracle reserved function for which the usage, interface, and documentation might change without notice at Oracle's sole discretion. This information is provided so customers might document problem symptoms.	
Messages are written tracing subroutine name and arguments upon entry, and subroutine name and conditions at exit.	
Messages are written tracing PGAU initialization and termination functions.	
Messages are written tracing control block allocation, queuing, searching, dequeuing, and deletion.	
Messages are written tracing input, output, and control operations for	
Messages are written tracing the loading of transaction, call, data parameter, field, attribute, environment and compiler information from the PG DD.	
Messages are written tracing the Oracle UPI call results for SQL statement processing and	
Messages are written tracing steps completed in TIP Generation, typically a record for each call, parameter, and data field for which a PL/SQL code segment has been generated.	
causes additional TIP execution time diagnostic logic to be included within the generated PL/SQL package.	
Enables runtime checking of repeating group limits and the raising of exceptions when such limits are exceeded. Enables warning messages to be passed from the	
The additional logic checks for the existence of warnings and, if present, causes them to be displayed using The TIP generation default is to suppress such warnings on the presumption that a TIP has been tested with production data and that data conversion anomalies either do not exist, or are known and to be ignored. If errors occur which might be due to data conversion problems, regeneration of the TIP with Note: A runtime switch is also required to execute the warning logic. Additional messages are written to a named pipe for tracing the data conversion steps performed by the TIP as it executes.	
This option only causes the trace logic to be generated in the TIP. It must be enabled when the TIP is initialized. Refer to"Controlling TIP Runtime Conversion Warnings" in Chapter 8, "Troubleshooting" for more information.	
PL/SQL single line Comments are included in TIPs which reference the PG DD id numbers for the definitions causing the TIP function calls and conversions.	
Examples	
Refer to "Sample PGAU GENERATE Statement" in Appendix F for examples of GENERATE	
commands.	
GENERATE Usage Notes:	
GENERATE	
trace messages are designated PGU-39nnn. Refer to the %ORACLE_HOME%\dg4appc\mesg\pguus.msg	
file on Microsoft Windows or $ORACLE_HOME/dg4appc/mesg/pguus.msg	
on UNIX based systems for further information on any given trace message. pgau.trc	
trace message output file is overwritten by the next invocation of GENERATE	
, regardless of the TRACE	
specification. A trace header record is always written to the pgau.trc	
file. If a particular trace file is to be saved, it must be copied to another file before the next invocation of GENERATE	
. TRACE	
options can be specified in any order or combination, and can also be specified with PKGEX	
operand on the same GENERATE	
statement. Purpose	
Multiple PGAU commands can be grouped together for purposes of updating the PG DD, and for rolling back all changes resulting from the commands in the group, if any one statement fails.	
No COMMIT	
processing is performed, even if all commands within the group succeed. You perform the COMMIT	
either by coding COMMIT	
commands in the PGAU script, outside of GROUP	
s, or by issuing COMMIT	
interactively to PGAU.	
PGAU issues a savepoint ROLLBACK	
to conditions before processing the group if any statement within the group fails.	
Syntax	
pgaustmtN:	
is a PGAU DEFINE	
, REDEFINE	
, or UNDEFINE	
statement	
Examples	
GROUP Usage Notes:	
GROUP	
s. Each GROUP	
can be interspersed with SQL commands, such as COMMIT	
or SELECT	
or with PGAU commands, such as GENERATE	
or REPORT	
. ROLLBACK	
to conditions at the beginning of the group. All subsequent commands within the group are flushed and not examined. PGAU execution resumes with the statement following the group. If that statement is a COMMIT	
, all PG DD changes made before the failing group are committed. Purpose	
Use this command to execute an operating system command without exiting PGAU.	
Syntax	
The HOST	
command has the syntax:	
host_command	
is any valid operating system command.	
Examples	
HOST Usage Notes	
HOST	
command starts a new command shell under which to execute the specified operating system command. This means that any environment changes caused by the executed command affect only the new command shell started by PGAU, and not the command shell under which PGAU itself is executing. For example, a "cd" command executed by the HOST	
command does not change the current directory in the PGAU execution environment. Purpose	
Use this command to print the value of a variable defined with the VARIABLE	
command.	
Syntax	
The PRINT	
command has the syntax:	
varname	
is a variable name which is defined by a variable command.	
Examples	
PRINT Usage Notes	
Purpose	
The existing data definition in the PG Data Dictionary is modified. PG DD column values for DATA#	
, FLD#	
, and POS	
remain the same for redefined data items. This permits existing CALL	
and DATA	
definitions to utilize the redefined data. REDEFINE	
does not create a different version of a data definition and the version number is not updated.	
Syntax	
"	
nlsname")]Table 2-6 describes the REDEFINE DATA	
parameters:	
Table 2-6 REDEFINE DATA Parameter Descriptions	
Parameter	Description
---	---
is a mandatory parameter. It is the name of the data definition to be modified.	
is an optional parameter. It specifies which version of	
is an optional parameter. It is the name of the PL/SQL variable associated with the	
is an optional parameter. It is the name of a field or group within the	
is an optional parameter if	
is optional. If omitted, the last usage specified is retained. It specifies the way the TIP handles the data items when exchanged in calls with the remote transaction:	
If specified, all affected fields are updated with the same The	
is optional. If omitted, the last options specified are retained. If specified as a null string ('') then the last options specified are removed. If a non-null value is specified, then the last options specified are all replaced with the new options. The only option currently supported is '	
is an optional parameter. The default value is "	
is an optional parameter. The default value is initialized from the	
is a mandatory parameter if definition input is specified. It specifies the name of the programming language in the supplied definition. PGAU presently supports only COBOL.	
is mutually exclusive with the	
is mutually exclusive with the Note that "	
Examples	
Refer to "Sample PGAU REDEFINE DATA Statements" in Appendix F for examples of REDEFINE	
commands.	
REDEFINE DATA Usage Notes:	
PLSDNAME	
, FIELD	
, or PLSFNAME	
allows redefinition of a single data item's names while the (definition)	
parameter redefines the named data item's content. FIELD	
denotes only a single data field (single PG DD row uniquely identified by dname	
, fname	
, and version)	
is updated. The absence of FIELD	
denotes that multiple data fields (multiple PG DD rows identified by dname	
and version	
) are updated or replaced by the definition input. REMOTE_LANGUAGE	
and LOCAL_LANGUAGE	
override the character sets used for conversion of any individual SBCS, DBCS, or MBCS character data field. LANGUAGE	
(language)	
and (definition)	
INFILE	
(
"filespec")	
are mandatory as a group. If data definitions are to be supplied, then a LANGUAGE	
parameter must be specified and then either the inline definition or INFILE	
must also be specified. (definition)	
INFILE	
("filespec"	
) denotes that multiple data fields (those PG DD rows identified by dname	
and version) are updated or replaced by the definition input. Fewer, equal, or greater numbers of fields might result from the replacement. INFILE	
("filespec")	
is a platform-specific designation of a disk file. COMPOPTS ('TRUNC(BIN)')	
should be used only when the remote host transaction was compiled using COBOL with the TRUNC(BIN)	
compiler option specified. When this option is used, binary data items defined as PIC 9(4)	
or PIC S9(4)	
can actually contain values with 5 digits, and binary data items defined as PIC 9(9)	
or PIC S9(9)	
can actually contain values with 10 digits. Without COMPOPTS ('TRUNC(BIN)')	
, PGAU generates NUMBER(4,0)	
or NUMBER(9,0)	
fields for these data items, resulting in possible truncation of the values. When COMPOPTS ('TRUNC(BIN)')	
is specified, PGAU generates NUMBER(5,0)	
or NUMBER(10, 0)	
fields for these data items, avoiding any truncation of the values. Care must be taken when writing the client application to ensure that invalid values are not sent to the remote host transaction. For a PIC 9(4)	
the value must be within the range 0	
to 32767	
, for a PIC S9(4)	
the value must be within the range -32767	
to +32767	
, for a PIC 9(9)	
the value must be within the range 0	
to 2,147,483,647	
, and for a PIC S9(9)	
the value must be within the range -2,147,483,647	
to +2,147,483,647	
. COBOL always reserves the high-order bit of binary fields for a sign, so the value ranges for unsigned fields are limited to the absolute values of the value ranges for signed fields. For further information, refer to the appropriate IBM COBOL programming manuals. Purpose	
Comments can either be introduced by the REM	
command or started with the two-character sequence /* and terminated with the two-character sequence */.	
Use the REM	
command to start a Comment line.	
Syntax	
The REM	
command has the syntax:	
Comment	
is any strings.	
Examples	
REM Usage Notes	
You do not need to place ";" at the end of the command.	
Purpose	
This command produces a report of selected data from the PG Data Dictionary. Selection criteria might determine that:	
TRANSACTION	
, CALL	
, or DATA	
entity (with or without an explicit version) is reported, or TRANSACTION	
, CALL	
, or DATA	
entities with a given name be reported or that all entities in the PG DD be reported, or TRANSACTION	
s or CALL	
s and all unreferenced CALL	
s, or DATA	
entities be reported. Syntax	
Table 2-7 describes the REPORT	
parameter:	
Table 2-7 REPORT Parameters Descriptions	
Parameter	Description
---	---
Reports the PG DD contents for the latest or selected versions of the transaction	
Reports the PG DD contents for the latest or selected versions of the call	
Reports the PG DD contents for the latest or selected versions of the data	
Reports selected versions of the indicated entry and is mutually exclusive with	
Reports the PG DD contents for all existing versions of every transaction entry or optionally a specific transaction	
Reports the PG DD contents for all existing versions of every call entry or optionally a specific call	
Reports the PG DD contents for all existing versions of every data entry or optionally a specific data	
Reports call entries associated with the specified transactions.	
Reports data entries associated with the specified calls, and when specified for transactions, implies	
Reports PG DD column values for This report is useful with TIPs generated with PG DD Diagnostic references. Refer to the	
Mutually exclusive with all other parameters. All unreferenced	
REPORT Usage Notes:	
DEFINE DATA	
command which defines the data to the PG DD. CALL	
and TRANSACTION	
reports are formatted as PGAU DEFINE CALL	
or TRANSACTION	
commands (also called "statements"), which effectively define the entry to the PG DD. dname	
, or optionally, for those specific versions given. This command reports all data definitions specified by data name dname	
:	
cname	
, or optionally for those specific versions given. This command reports all call definitions specified by call name cname:	
This command reports all call definitions in the PG DD:	
When WITH DATA	
is specified, all the data definitions associated with each selected call are also reported. The data definitions precede each corresponding selected call in the report output.	
tname	
, or optionally for those specific versions given. This command reports all transaction definitions specified by transaction name tname:	
This command reports all transaction definitions in the PG DD:	
When WITH CALLS	
option is specified, all call definitions associated with each selected transaction are also reported (the call definitions precede each corresponding selected transaction in the report output).	
When WITH DATA	
is specified, all the data definitions associated with each selected call are also reported (the data definitions precede each corresponding selected call in the report output).	
For transaction reports, specification of WITH DATA	
implies specification of WITH CALL	
.	
CALL	
or DATA	
definitions. It also reports any TRANSACTION	
or CALL	
definitions that reference missing CALL	
or DATA	
definitions respectively. Data definitions are reported, followed by their associated call definitions, followed by the associated transaction definition.	
This sequence is repeated for every defined call and transaction in the PG DD.	
Table 2-8 describes the SET	
parameters:	
Table 2-8 SET Parameter Descriptions	
Parameter	Description
---	---
Sets the number of rows fetched at a time from the database. The default is	
Sets the column display width for	
Sets the column display width for	
Sets echoing of commands entered from command files to	
Sets the number of rows returned by a query. This is useful with ordered queries for finding a certain number of items in a category, the top ten items for example. It is also useful with unordered queries for finding the first	
Sets the column display width for	
Sets the maximum data size. It indicates the maximum data that can be received in a single fetch during a	
Sets the column display width for	
Sets debugging output from stored procedures that use	
Indicates whether execution of a command file should stop if an error occurs. Specifying	
Enables or disables terminal output for SQL commands. It is useful for preventing output to the terminal when spooling output to files. The default is	
Enables or disables display of parse, execute, and fetch times (both CPU and elapsed) for each executed SQL statement. The default is	
Examples	
SET Usage Notes	
Table 2-9 describes the SHOW	
parameters:	
Table 2-9 SHOW Parameter Descriptions	
Parameters	Description
---	---
Shows all valid	
Shows the number of rows fetched at a time from the database.	
Shows the column display width for	
Shows the column display width for	
Shows echoing of commands entered from command files to	
Shows the number of rows returned by a query.	
Shows the column display width for	
Shows the maximum data size.	
Shows the column display width for	
Shows debugging output from stored procedures that use	
Indicates whether execution of a command file should stop if an error occurs.	
Shows whether the terminal output for SQL commands is enabled or disabled.	
Shows whether display of parse, execute, and fetch times (both CPU and elapsed) for each executed SQL statement is enabled or disabled.	
Is the same as the	
Examples	
Note that when you issue a SET	
command, there will be no output if it is successful. If you want to check whether your statement was executed successfully, issue a SHOW	
command like the following:	
SHOW Usage Notes	
Purpose	
Use this command to specify a filename that captures PGAU output. All output is directed to the terminal unless TERMOUT	
is off.	
Syntax	
The SPOOL	
command has the syntax:	
If a simple filename is specified, with no periods, then .log	
is appended to the filename.	
filename	
is where the output of your executed commands is placed.	
Examples	
SPOOL Usage Notes	
Purpose	
Use this command to remove an occurrence of the CALL	
definition from PG DD.	
Syntax	
Table 2-10 describes the UNDEFINE CALL	
parameters:	
Table 2-10 UNDEFINE CALL Parameter Descriptions	
Parameter	Description
---	---
A mandatory parameter. It specifies the name associated with the item to be dropped; if no version is specified only the latest (highest numbered) version is removed.	
An optional parameter. It specifies which singular version of a definition is to be removed, or if	
Examples	
Refer to "Sample PGAU UNDEFINE Statements" in Appendix F for examples of UNDEFINE CALL	
commands.	
UNDEFINE CALL Usage Notes:	
.pkh	
and .pkb	
specification files exist and those previous TIPS can be invoked if they remain in the database of the Oracle database. Whether such TIPs execute successfully depends on whether the corresponding remote transaction programs are still active. CALL	
definition only after all TRANSACTION	
s which reference it are removed. No integrity checking is done. Purpose	
Use this command to remove an occurrence of the DATA	
definition in the PG Data Dictionary.	
Syntax	
Table 2-11 describes the UNDEFINE DATA	
parameters:	
Table 2-11 UNDEFINE DATA Parameter Descriptions	
Parameter	Description
---	---
A mandatory parameter. It specifies the name associated with the item to be dropped. If no version is specified, only the latest (highest numbered) version is removed.	
An optional parameter. It specifies which singular version of a definition is to be removed, or if	
Examples	
Refer to "Sample PGAU UNDEFINE Statements" in Appendix F for examples of UNDEFINE DATA	
commands.	
UNDEFINE DATA Usage Notes	
.pkh	
and .pkb	
specification files remain in existence. Previously created TIPs can still be invoked if they remain in the database of the Oracle database. Whether such TIPs execute successfully depends on whether the corresponding remote transaction programs are still active. DATA	
definition only after all CALL	
s and all TRANSACTION	
s which reference it are removed. No integrity checking is done. Purpose	
This command removes an occurrence of the TRANSACTION	
definition in the PG Data Dictionary.	
Syntax	
Table 2-12 describes the UNDEFINE TRANSACTION	
parameters:	
Table 2-12 UNDEFINE TRANSACTION Parameter Descriptions	
Parameter	Description
---	---
Mandatory parameter. It specifies the name associated with the item to be dropped. If no version is specified, only the latest (highest numbered) version is removed.	
Optional parameter. It specifies which singular version of a definition is to be removed, or if	
Examples	
Refer to "Sample PGAU UNDEFINE Statements" in Appendix F for examples of UNDEFINE TRANSACTION	
commands.	
UNDEFINE TRANSACTION Usage Notes	
.pkh	
and .pkb	
specification files remain in existence. Previously created TIPs can be invoked if they remain in the database of the Oracle database. Whether such TIPs execute successfully depends on whether the corresponding remote transaction programs are still active. TRANSACTION	
definition can be removed at any time. Purpose	
Use this command to declare a bind variable for use in the current session with the EXECUTE	
or PRINT	
command, or for use with a PL/SQL block.	
Syntax	
The VARIABLE	
command has the syntax:	
Table 2-13 describes the VARIABLE	
parameters.	
Table 2-13 VARIABLE Parameter Descriptions	
Parameter	Description
---	---
Is a variable name.	
Is the variable datatype	
Examples	
VARIABLE Usage Notes	
This chapter shows in detail how you can define, generate and compile a Transaction Interface Package (TIP). It assumes that a remote host transaction program (RTP) already exists. This transaction program has operational characteristics that dictate how the TIP is defined and how the TIP is used by the client application.	
This chapter contains the following sections:	
The following steps create a TIP for use with a remote host transaction (RHT):	
This chapter also discusses the generated TIP content file.	
Every TIP developer requires access to the following PL/SQL packages, which are shipped with the Oracle database:	
For Microsoft Windows:	
DBMS_PIPE	
in %ORACLE_HOME%\rdbms\admin	
UTL_RAW	
in %ORACLE_HOME%\rdbms\admin	
UTL_PG	
in %ORACLE_HOME%\rdbms\admin	
For UNIX based systems:	
DBMS_PIPE	
in $ORACLE_HOME/rdbms/admin	
UTL_RAW	
in $ORACLE_HOME/rdbms/admin	
UTL_PG	
in $ORACLE_HOME/rdbms/admin	
If anyone other than user PGAADMIN	
will be developing TIPs, they will need explicit grants to perform these operations. Refer to the "Optional Configuration Steps" section in the configuration chapter appropriate to your communication protocol in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows or more information about private and public grants.	
Follow the steps below to identify and become familiar with your remote host transaction data exchanges.	
You must first identify the RHT data exchange steps. These are the send and receive calls embedded within the RHT program.	
If your gateway is using the SNA communication protocol:	
The RHT data exchange steps are identified under the following languages:	
If your gateway is using the TCP/IP communication protocol:	
IMS is the only OLTP that is supported when the gateway is using TCP/IP support for IMS Connect. The RHT programs must use embedded I/O PCB function calls. The function is identified only under the COBOL and Assembler languages.	
Make a call list of every data exchange. This list dictates a series of PGAU DEFINE CALL	
statements. Refer to "DEFINE CALL" in Chapter 2, "Procedural Gateway Administration Utility" for more information about this PGAU command.	
The three important parameters that you will use for each call are:	
cname	
: the name of the call definition to be created; dname	
: the name of the data structure to be exchanged; and OUT	
) or receive (IN	
) RHT send corresponds to a TIP OUT	
and RHT receive corresponds to a TIP IN	
.	
If your communication protocol is SNA: Refer to Section 4.6.2.1, "Flexible Call Sequence" for more information about PGAU DEFINE CALL	
commands.	
If your communication protocol is TCP/IP: Refer to Section 7.3.2.1, "Flexible Call Sequence" for more information about PGAU DEFINE CALL	
commands.	
PGAU call entries are only defined once, so eliminate any duplicates.	
This call list defines the TIP function calls, not the order in which they are used. Note that the order in which each call is made is a behavior of the transaction and dictates the order of calls made by the high-level application to the TIP, which then calls the RHT through the Database Gateway server. While this calling sequence is critical to maintaining the synchronization between the application and the RHT, the TIP is only an access method for the application and has no knowledge of higher level sequencing of calls.	
For each call in the RHT call list, identify the RHT data structures being sent or received in the call buffers.	
Make a data list of every such structure. This list dictates a series of PGAU DEFINE DATA	
statements.	
The two important parameters that you will use for DEFINE DATA	
are:	
dname:	
the name of the data definition to be created; and dname.ext:	
the file in which the data definition is stored. PGAU data entries are only defined once, so eliminate any duplicates.	
Note: Move COBOL record layouts (copybooks) to the gateway system.PGAU can use copybooks as input when defining the data items. Once you have identified the data items to be exchanged, use a file transfer program to download the copybooks to the gateway system. The copybooks are later used to define the data items. The sample copybook used in the example is documented in Appendix F, "Administration Utility Samples".	
Determine the network address information for the RHT program. Your network or OLTP system programmer can provide you with this information.	
The five important parameters that you will use for PGAU DEFINE TRANSACTION	
are:	
Side Profile name	
TP name	
LU name	
LOGMODE	
SYNCLEVEL	
You must also identify the Globalization Support character set (charset	
) for the language in which the OLTP expects the data.	
At this point, if your gateway is using SNA, then proceed to Section 3.2.6, "Writing the PGAU Statements".	
Before you use this command, you will need to know the IMS Connect hostname (or TCP/IP address), port number and the other IMS Connect parameters that are defined as columns within the PGA_TCP_IMSC	
table. Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" for complete information about preparation for mapping parameters to TCP/IP using the pg4tcpmap	
tool.	
When you run the pg4tcpmap	
tool you need to specify a unique name (Side Profile Name). That name must be the same name that you are using here to create your TIP.	
If you are converting your gateway from the SNA to a TCP/IP communications protocol to invoke IMS transactions: You need to regenerate the TIPs. Refer to Chapter 2, "Procedural Gateway Administration Utility" for details.	
After evaluating the RHT, define the TIP to PGAU for placement in the PG DD.	
DEFINE DATA	
statement for each entry in your data list. If, for example, your RHT had three different data structures, your data definitions might be: Then you must copy or transfer the source file containing these data definitions to the directory where PGAU can read them as input.	
DEFINE CALL	
statement for each entry in your call list. If, for example, your RHT had a receive send receive send sequence, your call definitions would be: Note: Optionally, you can rewrite your call definitions to consolidate the data transmission into fewer exchanges, as long as you do not alter the data transmission sequence. For example:	
This reduces the calls between the application and the TIP from four calls to two calls passing an If your communication protocol is SNA: Refer to Section 4.6.2.1, "Flexible Call Sequence" for more information about PGAU If your communication protocol is TCP/IP: Refer to Section 7.3.2.1, "Flexible Call Sequence" for more information about PGAU	
DEFINE TRANSACTION	
statement that contains every call, specifying the network address and Globalization Support information: GENERATE	
statement to create the TIP specification: The previous section describes the steps you need to follow in order to execute PGAU statements via your PGAU command line processor. As a time saving measure, you can choose to write all of the statements (DEFINE DATA	
, DEFINE CALL	
and DEFINE TRANSACTION	
) into a single PGAU script file named tname.ctl	
, in the following order:	
This is an example of a tname.ctl	
PGAU script file:	
After you have created your control file, use PGAU to create the PG DD entries and the TIP specification files.	
Note: The user ID under which you run PGAU must have:	
Invoke PGAU against your PG DD stored in the Oracle Database Gateway for APPC Administrator's user ID:	
For Microsoft Windows:	
For UNIX based systems:	
Issue the following commands:	
The TIP is now ready to be compiled. By default, the GENERATE	
statement writes your TIP specifications to the following output files in your current directory:	
Note: You can optionally add spool and echo to your script (tname.ctl) or make other enhancements, such as using PG DD roles and the PGAU GROUP statement for shared PG DDs.	
Exit PGAU. Remain in your current directory and invoke SQL*Plus.	
For Microsoft Windows:	
For UNIX based systems:	
The last two commands compile the TIP specification and body, respectively.	
You have now compiled a TIP which can be called by your client application. If your client application is already written you can begin testing.	
For more information about designing your client application and compiling a TIP, refer to Chapter 1, "Introduction to Oracle Database Gateway for APPC" and Appendix E, "Tip Internals".	
If your gateway is using SNA: Refer to Chapter 4, "Client Application Development (SNA Only)" for information about PGAU statement syntax and usage.	
If your gateway is using TCP/IP support for IMS Connect: Refer to Chapter 7, "Client Application Development (TCP/IP Only)" for information about PGAU statement syntax and usage.	
This section discusses the TIP documentation file that is produced when the user issues a PGAU GENERATE	
command. This TIP content file describes the function calls and PL/SQL	
variables and datatypes available in the TIP.	
PGAU GENERATE	
always produces a TIP content file named tipname	
.doc	
. The filename is the name of the transaction that was specified in the PGAU GENERATE	
command, and the filetype is always .doc	
. This TIP content file contains the following sections:	
GENERATION	
Status This section contains the status under which the TIP is generated.	
This section identifies the defined transaction attributes. These result from the PGAU DEFINE TRANSACTION	
definition.	
This section identifies the syntax of the calls made by the user's application to initialize and terminate the transaction. PGAU generates these calls into every TIP regardless of how the TIP or transaction is defined.	
This section identifies the syntax of the calls which the user defines for the application to interact with the transaction.	
This section identifies the TIP package public datatype declarations, implied by the user's data definition specified in each call parameter.	
This section contains TIP variables that can be referred to by applications or referenced by applications.	
This chapter discusses how you will call a TIP and control a remote host transaction. It also provides you with the steps for preparing and executing a gateway transaction. This chapter assumes:	
Note: If your gateway uses the TCP/IP support for IMS Connect, refer to Chapter 7, "Client Application Development (TCP/IP Only)" for information about calling a TIP and controlling a remote host transaction.	
This chapter contains the following sections:	
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP using definitions you provide. The client application can then call the TIP to access the remote host transaction. Chapter 2, "Procedural Gateway Administration Utility", discusses the use of PGAU in detail.	
This overview explains what you must do in order to call a TIP and control a remote host transaction.	
The gateway receives PL/SQL calls from the Oracle database and issues APPC calls to communicate with a remote transaction program. The following three application programs make this possible:	
PGAU generates the TIP specification for you. In the shipped samples, the PGAU-generated package is called pgadb2i.pkb	
. This generated TIP includes at least three function calls that map to the remote transaction program:	
pgadb2i_init	
initializes the conversation with the remote transaction program pgadb2i_main	
exchanges application data with the remote transaction program pgadb2i_term	
terminates the conversation with the remote transaction program Refer to Appendix E, "Tip Internals" for more information about TIPs, if you are writing your own TIP or debugging.	
The client application calls the three TIP functions with input and output arguments. In the example, the client application passes empno	
, an employee number to the remote transaction and the remote transaction sends back emprec	
an employee record.	
Table 4-1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the gateway using the example CICS-DB2 transaction.	
Table 4-1 Logic Flow of CICS-DB2 Example	
Client Application	Oracle TIP
---	---
Calls	Gateway sets up control blocks and issues APPC
Calls	Gateway issues APPC
Call	Gateway cleans up control blocks.
A client application which utilizes the gateway to exchange data with a remote host transaction performs some tasks for itself and instructs the TIP to perform other tasks on its behalf. The client application designer must consequently know the behavior of the remote transaction and how the TIP facilitates the exchange.	
The following sections provide an overview of remote host transaction behavior, how this behavior is controlled by the client application and how TIP function calls and data declarations support the client application to control the remote host transaction. These sections also provide background information about what the TIP does for the client application and how the TIP calls exchange data with the remote host transaction.	
To prepare the client application for execution you must understand the remote host transaction requirements and then perform these steps:	
DEFINE DATA	
, DEFINE CALL	
, and DEFINE TRANSACTION	
statements. GENERATE	
. Browse through the remote host transaction program (RTP) to determine:	
Identify the remote host transaction program (RTP) facilities to be called and the data to be exchanged on each call. You will then define the following, and store them in the PG DD:	
DEFINE DATA	
DEFINE CALL	
DEFINE TRANSACTION	
Refer to Chapter 3, "Creating a TIP" for specific definition steps and for the actual creation and generation of a TIP.	
The content of a PGAU-generated TIP reflects the calls available to the remote host transaction and the data that has been exchanged. Understanding this content helps when designing and debugging client applications that call the TIP.	
A TIP is a PL/SQL package, and accordingly has two sections:	
The purpose of the TIP is to provide a PL/SQL callable public function for every allowed remote transaction program interaction. A remote transaction program interaction is a logically related group of data exchanges through one or more PGAXFER	
RPC calls. This is conceptually similar to a screen or menu interaction in which several fields are filled in, the enter key is pressed, and several fields are returned to the user. Carrying the analogy further:	
IN	
parameters on the TIP function call OUT	
parameters on the TIP function call IN	
and OUT	
parameters combined PGAXFER	
remote procedural call (RPC) The actual grouping of parameters that constitute a transaction call is defined by the user. The gateway places no restrictions on how a remote transaction program might correspond to a collection of TIP function calls, each call having many IN	
and OUT	
parameters.	
PGA users typically have one TIP per remote transaction program. How the TIP function calls are grouped and what data parameters are exchanged on each call depends on the size, complexity and behavior of the remote transaction program.	
Refer to Oracle's Oracle Database PL/SQL Language Reference for a discussion of how PL/SQL packages work. The following discussion covers the logic that must be performed within a TIP. Refer to the sample TIP and driver supplied in the %ORACLE_HOME%\dg4appc\demo\CICS	
directory for Microsoft Windows or $ORACLE_HOME/dg4appc/demo/CICS	
directory for UNIX based systems, in files pgadb2i.pkh	
, pgadb2i.pkb	
, and pgadb2id.sql	
.	
From a database gateway application perspective, there are three main types of remote host transactions:	
A simple remote transaction program which receives one employee number and returns the employee record could have a TIP which provides one call, passing the employee number as an IN	
parameter and returning the employee record as an OUT	
parameter. An additional two function calls must be provided by this and every TIP:	
The most simple TIP has three public functions, such as tip_init	
, tip_main	
, and tip_term	
.	
The client application calls tip_init	
, tip_main	
, and tip_term	
in succession. The corresponding activity at the remote site is remote transaction program start, data exchange, and remote transaction program end.	
The remote transaction program might even terminate itself before receiving a terminate signal from the gateway. This sequence is usual and is handled normally by gateway logic. This kind of remote transaction program is termed one-shot.	
A more complex remote transaction program has two modes of behavior: an INQUIRY	
or reporting mode, and an UPDATE	
mode. These modes can have two TIP data transfer function calls: one for INQUIRY	
and one for UPDATE	
. Such a TIP might have five public functions. For example:	
tip_init	
This initializes communications with the remote transaction program.	
tip_mode	
This accepts a mode selection parameter and puts the transaction program into either inquiry or update mode.	
tip_inqr	
This returns an employee record for a given employee number.	
ip_updt	
This accepts an employee record for a given employee number.	
tip_term	
This terminates communications with the remote transaction program.	
The client application calls tip_init	
and then tip_mode	
to place the remote transaction program in inquiry mode which then scans employee records, searching for some combination of attributes (known to the client application and end-user). Some parameter on an inquiry call is then set to signal a change to update mode and the client application calls tip_updt	
to update some record. The client application finally calls tip_term	
to terminate the remote transaction program.	
The corresponding activity at the remote site is:	
Such a remote transaction program is called persistent because it interacts until it is signalled to terminate.	
The remote transaction program can be written to permit a return to inquiry mode and repeat the entire process indefinitely.	
A client application might need to get information from one transaction, tran_A	
, and subsequently write or lookup information from another, tran_B	
. This is possible with a properly written client application and TIPs for tran_A	
and tran_B	
. In fact, any number of transactions might be concurrently controlled by a single client application. All transactions could be read-only, with the client application retrieving data from each and consolidating it into a local Oracle database or displaying it in an Oracle Form.	
Alternatively, a transaction could be capable of operating in different modes or performing different services depending on what input selections were supplied by the client application. For example, one instance of tran_C	
can perform one service while a second instance of tran_C	
performs a second service. Each instance of tran_C	
would have its own unique conversation with the client application and each instance could have its own behavior (one-shot or persistent) depending on the nature of the service being performed.	
Each remote host system might have hundreds of remote transaction programs (RTPs) which a user might want to call. Each remote transaction program is different, passes different data, and performs different functions. The interface between the user and each remote transaction program must consequently be specialized and customized to the user's requirements for each remote transaction program. The Transaction Interface Package provides this customized interface.	
Example	
Assume that the remote site has a transaction program which manages employee information in an employee database or other file system. The remote transaction program's name, in the remote host, is EMPT	
for Employee Tracking. EMPT	
provides both inquiry and update facilities, and different Oracle users are required to access and use these EMPT	
facilities.	
Some users might be restricted to inquiry-only use of EMPT	
, while others might have update requirements. In support of the Oracle users' client applications, at least three possible TIPs could exist:	
EMP_MGMT	
to provide access to all facilities of the EMPT	
remote transaction program. EMP_UPDT	
to access only the update functions of the EMPT	
remote transaction program. EMP_INQR	
to access only the lookup functions of the EMPT	
remote transaction program. End-user access to these TIPs is controlled by Oracle privileges. Additional security might be imposed on the end-user by the remote host.	
Each TIP also has encoded within it the name of the remote transaction program (EMPT	
) and network information sufficient to establish an APPC conversation with EMPT	
.	
Using the TIP, the client application must correspond with and control the remote host transaction. This involves:	
remote host transaction initialization using the TIP initialization functions (with and without overrides)	
remote host transaction control and data exchange using the TIP user functions	
remote host transaction termination using the TIP termination function	
Steps 3, 4 and 5 vary, based on the requirements of the remote host transaction.	
One-shot remote host transaction client applications must:	
Refer to the TIP content documentation file in %ORACLE_HOME%\dg4appc\demo\CICS\	
on Microsoft Windows or $ORACLE_HOME/dg4appc/demo/CICS/	
on UNIX based systems, for the specific TIP/RHT for the exact syntax of this call.	
The client application should initialize values into IN	
or IN OUT	
parameter values before calling the TIP function call. These are the same variables that were declared above, when you declared the RHT/TIP datatypes to be exchanged.	
All TIP function calls return a 0	
return code value and all returned user gateway data values are exchanged in the function parameters. Any exception conditions are raised as required and can be intercepted in an exception handler.	
Upon return from the TIP function call, the client application can analyze and operate on the IN OUT	
or OUT	
parameter values. These are the same variables that were declared above, when you declared the RHT/TIP datatypes to be exchanged.	
Refer to Appendix D, "Datatype Conversions" for details about how TIPs convert the various types and formats of remote host data.	
The client application can request a normal or an aborted termination.	
Refer to "Terminating the Conversation" for more information.	
Persistent remote host transaction client applications must:	
A persistent RHT can be controlled with one or more TIP function calls. The RHT might be designed, for example, to loop and return output for every input until the conversation is explicitly terminated. Or it could have been designed to accept as input a count or list of operations to perform and return the results in multiple exchanges for which the TIP function has only OUT	
parameters.	
A persistent RHT can also be interactive, each output being specified by a previous input selection and ending only when the conversation has been explicitly terminated by the client application.	
The TIP function calls available to the client applications and their specific syntax is documented in the TIP Content documentation file for the specific TIP/RHT.	
The manner in which the RHT interprets the TIP IN	
parameters and returns TIP OUT	
parameters must be determined from the RHT or explained by the RHT programmer. The TIP provides the function calls and the exchanged parameter datatypes to facilitate the client application's control of the RHT and imposes no limitations or preconditions on the sequence of operations the RHT is directed to perform. The TIP provides the client application with the calls and data parameters the RHT was defined to accept in the PG DD.	
The client application can request a normal or an aborted termination.	
Refer to "Terminating the Conversation" for more information.	
Multi-conversational remote host transaction client applications must:	
If a single RHT is designed to perform multiple services for one or more callers and if the client application is designed to use this RHT, the TIP corresponding to that RHT can be initialized multiple times by the client application.	
The client application subsequently distinguishes from active RHTs under its control using:	
tipname.callname	
when multiple TIP/RHTs are being controlled. By encoding the same TIP schema name on TIP user calls, the client application specifies to which RHT the call is being made. tranuse	
IN OUT	
parameter value when multiple instances of the same TIP/RHT are being controlled. This is the value returned on the TIP initialization function call and subsequently passed as an IN	
parameter on the user-defined TIP function calls. The returned tranuse	
value corresponds to that conversation connected to a given instance of an RHT. By supplying the same tranuse	
value on TIP user calls, the client application specifies to which RHT instance the given RHT call is being made. Client application logic must keep track of which RHTs have been started and which TIPs and tranuse	
values correspond to started RHTs.	
Client application logic must also perform any cross-RHT result analysis or data transfer that might be required. All TIPs execute in isolation from each other.	
Output from one RHT intended as input to another RHT must be received in the client application as an IN	
or IN OUT	
parameter from the first RHT and sent as an IN	
or IN OUT	
parameter from the client application to the second RHT. All TIP-to-RHT function calls must be performed by the client application and data parameters exchanged must have been declared as variables by the client application. The TIPs provide both the required datatype definitions and the RHT function calls for the client application.	
Refer to the TIP content documentation file for each specific TIP/RHT for the exact syntax of the TIP function calls and definitions of the parameter datatypes exchanged.	
tranuse	
value when multiple instances of the same RHT are being terminated. RHTs and their corresponding TIPs can be terminated in any sequence desired by the client application and do not have to be terminated in the same order in which they are initialized.	
Note: The specific syntax of the various TIP data exchange variables function calls is the same as was previously defined in the PG DD for the particular RHT and can be researched by examining the TIP content documentation file (tipname.doc) or the TIP specification file produced when the TIP was generated. If a TIP has not yet been generated for the RHT being accessed, refer to Chapter 3, "Creating a TIP", and "DATA Correspondence", "CALL Correspondence", and "TRANSACTION Correspondence" for more information. It is preferable to define and generate the TIP first, however, so that the client application reference documentation is available to you when needed.	
A remote host transaction program and its related TIP with client application must correspond on two key requirements:	
DATA	
is defined. Refer to Appendix D, "Datatype Conversions" for a discussion of how PGAU-generated TIPs convert data based on the data definitions. CALL	
s are defined These DATA	
and CALL	
definitions are then included by reference in a TRANSACTION	
definition.	
Using data definitions programmed in the language of the remote host transaction, the PGAU DEFINE DATA	
command stores in the PG DD the information needed for PGAU GENERATE	
to create the TIP function logic to perform:	
IN	
parameters supplied by the receiving remote host transaction OUT	
parameters supplied by the sending remote host transaction PGAU determines the information needed to generate the conversion and buffering logic from the data definitions included in the remote host transaction program. PGAU DEFINE DATA	
reads this information from files, such as COBOL copy books, or in-stream from scripts and saves it in the PG DD for repeated use. The gateway Administrator needs to transfer these definition files from the remote host to the Oracle host where PGAU runs.	
From the data definitions stored in the PG DD, PGAU GENERATE	
determines the remote host datatype and matches it to an appropriate PL/SQL datatype. It also determines data lengths and offsets within records and buffers and generates the needed PL/SQL logic into the TIP. Refer to the PGAU "DEFINE DATA" statement in Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE DATA Statements" in Appendix F, "Administration Utility Samples" for more information.	
All data that are referenced as parameters by subsequent calls must first be defined using PGAU DEFINE DATA	
. Simple data items, such as single numbers or character strings, and complex multi-field data aggregates, such as records or structures, can be defined. PGAU automatically generates equivalent PL/SQL variables and records of fields or tables for the client application to reference in its calls to the generated TIP.	
As discussed, a parameter might be a simple data item, such as an employee number, or a complex item, such as an employee record. PGAU DEFINE DATA	
automatically extracts the datatype information it needs from the input program data definition files.	
In this example, empno	
and emprec	
are the arguments to be exchanged.	
A PGAU DEFINE DATA	
statement must therefore be issued for each of these parameters:	
Note that a definition is not required for the trannum	
argument. This is the APPC conversation identifier and does not require a definition in PGAU.	
The requirement to synchronize APPC SEND	
s and RECEIVE	
s means that when the remote transaction program expects data parameters to be input, it issues APPC RECEIVE	
s to read the data parameters. Accordingly, the TIP must cause the gateway to issue APPC SEND	
s to write the data parameters to the remote transaction program. The TIP must also cause the gateway to issue APPC RECEIVE	
s when the remote transaction program issues APPC SEND	
s.	
The PGAU DEFINE CALL	
statement specifies how the generated TIP is to be called by the client application and which data parameters are to be exchanged with the remote host transaction for that call. Each PGAU DEFINE CALL	
statement might specify the name of the TIP function, one or more data parameters, and the IN/OUT	
mode of each data parameter. Data parameters must have been previously defined with PGAU DEFINE DATA	
statements. Refer to "DEFINE CALL" in Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE CALL Statements" in Appendix F, "Administration Utility Samples" for more information.	
PGAU DEFINE CALL	
processing stores the specified information in the PG DD for later use by PGAU GENERATE	
. PGAU GENERATE	
then creates the following in the TIP package specification:	
CALL	
defined with PL/SQL parameters for each DATA	
definition specified on the CALL	
The client application calls the TIP public function as a PL/SQL function call, using the function name and parameter list specified in the PGAU DEFINE CALL	
statement. The client application might also declare, by reference, private variables of the same datatype as the TIP public data parameters to facilitate data passing and handling within the client application, thus sharing the declarations created by PGAU GENERATE	
.	
In this example, the following PGAU DEFINE CALL	
statement must be issued to define the TIP public function:	
The number of data parameters exchanged between the TIP and the gateway on each call can vary at the user's discretion, as long as the remote transaction program's SEND/RECEIVE	
requests are satisfied. For example, the remote transaction program data exchange sequence might be:	
The resulting TIP/application call sequence could be:	
To define these four public functions to the TIP, four PGAU DEFINE CALL	
statements must be issued, each specifying its unique public function name (tip_callx	
) and the data parameter list to be exchanged. Once a data item is defined using DEFINE DATA	
, it can be referenced in multiple calls in any mode (IN	
, OUT	
, or IN OUT	
). For example, parm5	
could be used a second time in place of parm6	
. This implies the same data is being exchanged in both instances, received into the TIP and application on tip_call2	
and returned, possibly updated, to the remote host in tip_call4	
.	
Notice also that the remote transaction program's first five written fields are read by two separate TIP function calls, tip_call1	
and tip_call2	
. This could also have been equivalently accomplished with five TIP function calls of one OUT	
parameter each or a single TIP function call with five OUT	
parameters. Then the remote transaction program's first read field (field6	
) and subsequent written field (field7	
) correspond to a single TIP function call (tip_call3	
) with a single IN OUT	
parameter (parm6	
).	
This use of a single IN OUT	
parameter implies that the remote transaction program's datatype for field6	
and field7	
are both the same and correspond to the conversion performed for the datatype of parm6	
. If field6	
and field7	
were of different datatypes, then they have to correspond to different PL/SQL parameters (for example, parm6	
IN	
and parm7	
OUT	
). They could still be exchanged as two parameters on a single TIP call or one parameter each on two TIP calls, however.	
Lastly, the remote transaction program's remaining three RECEIVE	
fields are supplied by tip_call4	
parameters 8-10. They also could have been done with three TIP calls passing one parameter each or two TIP calls passing one parameter on one call and two parameters on the other, in either order. This flexibility permits the user to define the correspondence between the remote transaction program's operation and the TIP function calls in whatever manner best suits the user.	
Each TIP public function first sends all IN	
parameters, before it receives any OUT	
parameters. Thus, a remote transaction program expecting to send one field and then receive one field must correspond to separate TIP calls.	
For example:	
PGAXFER	
RPC checks first for parameters to send, but finds none and proceeds to receive parameters:	
PGAXFER	
RPC processes parameters to send and then checks for parameters to receive, but finds none and completes; therefore, a single TIP public function with an OUT	
parameter followed by an IN	
parameter does not work, because the IN	
parameter is processed first--regardless of its position in the parameter list.	
The remote host transaction is defined with the PGAU DEFINE TRANSACTION	
statement with additional references to prior definitions of CALL	
s that the transaction supports.	
You specify the remote host transaction attributes, such as:	
Note: The PL/SQL package name is specified when the transaction is defined; this is the name by which the TIP is referenced and which the public function calls to be included within the TIP. Each public function must have been previously defined with a PGAUDEFINE CALL statement, which has been stored in the PG DD. If you do not specify a package name (TIP name) in the GENERATE statement, the transaction name you specified will become the package name by default. In that case, the transaction name (tname) must be unique and must be in valid PL/SQL syntax within the database containing the PL/SQL packages. For more information, refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE TRANSACTION Statement" in Appendix F, "Administration Utility Samples".	
In this example, the following DEFINE TRANSACTION	
statements are used to define a remote CICS transaction called DB2I	
:	
Once a TIP is created, a client application must be written to interface with the TIP. A client application that calls the TIP functions must include five logical sections:	
The user declarations section of the tipname.doc	
file documents the required declarations.	
When passing PL/SQL parameters on calls to TIP functions, the client application must use the exact same PL/SQL datatypes for TIP function arguments as are defined by the TIP in its specification section. Assume, for example, the following is in the TIP specification, or tipname.doc:	
Table 4-2 provides a description of the function declarations:	
Table 4-2 Function Declarations	
Item	Description
---	---
The TIP function name as defined in the package specification.	
The remote transaction instance parameter returned from the TIP init function identifying the conversation on which this TIP call is to exchange data.	
The PL/SQL record datatype declared in the	
Is a PL/SQL atomic datatype.	
Is a PL/SQL record field corresponding to a remote transaction program record field.	
In the client application PL/SQL atomic datatypes should be defined as the exact same datatype of their corresponding arguments in the TIP function definition. The following should be coded in the client application before the BEGIN	
command:	
TIP datatypes need not be redefined. They must be declared locally	
within the client application, appearing in the client application before the BEGIN	
:	
Table 4-3 describes the command line arguments:	
Table 4-3 Command Line Arguments	
Item	Description
---	---
The TIP function name as defined in the package specification.	
The remote transaction instance parameter returned from the TIP init function identifying the conversation on which this TIP call is to exchange data.	
The PL/SQL record datatype declared in the	
Refer to the tipname	
.doc	
content file for a complete description of the user declarations you can reference.	
The client application calls the TIP public function as if it were any local PL/SQL function:	
In the CICS-DB2 inquiry example, the PL/SQL driver pgadb2id.sql	
, which is located in %ORACLE_HOME%\dg4appc\demo\CICS	
directory for Microsoft Windows and $ORACLE_HOME/dg4appc/demo/CICS	
directory for UNIX based systems, is the client application and includes the following declaration:	
The call to initialize the conversation serves several purposes:	
PGAINIT	
remote procedural call (RPC), which in turn establishes communication with the remote transaction program (RTP), and returns a transaction instance number to the application. Optionally, calls to initialize the conversation can be used to:	
PGAU-generated TIPs provide four different initialization functions that client applications can call. These are overloaded functions which all have the same name, but vary in the types of parameters passed.	
Three initialization parameters are passed:	
tranuse	
parameter is required on all TIP initializations. tipdiag	
parameter is optional. Refer to Chapter 8, "Troubleshooting" for a discussion of TIP diagnostics. override	
parameter is optional. The following four functions are shown as they might appear in the TIP Content documentation file. Examples of client application use are provided later.	
This transaction instance number (shown in examples as tranuse	
) must be passed to subsequent TIP exchange and terminate functions. It identifies to the gateway on which APPC conversation--and therefore which iteration of a remote transaction program--the data is to be transmitted or communication terminated.	
A single client application might control multiple instances of the same remote transaction program or multiple different remote transaction programs, all concurrently. The transaction instance number is the TIP's mechanism for routing the client application call through the gateway to the intended remote transaction program.	
It is the responsibility of the client application to save the transaction instance number of each active transaction and pass the correct one to each TIP function called for that transaction.	
The client application calls the TIP initialization function as if it were any local PL/SQL function. For example:	
Note that in the preceding example the client application did not specify any remote transaction program name, network connection, or security information. The TIP has such information internally coded as defaults and the client application simply calls the appropriate TIP for the chosen remote transaction program. The client application can, however, optionally override some TIP defaults and supply security information.	
You do not need to change any client applications that do not require overrides.	
When the remote host transaction was defined in the PG DD, the DEFINE TRANSACTION	
statement specified certain default OLTP and network identification attributes which can be overridden:	
TPname	
LUname	
LOGMODE	
Side Profile	
Refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway Administration Utility" for more information about the DEFINE TRANSACTION	
statement.	
These PG DD-defined transaction attributes are generated into TIPs as defaults and can be overridden at TIP initialization time. This facilitates the use of one TIP, which can be used with a test transaction or system, and can later be used with a production transaction or system, without having to regenerate the TIP.	
The override_Typ	
record datatype describes the various transaction attributes that can be overridden by the client application. The following overrides are currently supported:	
tranname	
can be set to override the value that was specified by the TPNAME	
parameter of the DEFINE TRANSACTION	
statement oltpname	
can be set to override the value that was specified by the LUNAME	
parameter of the DEFINE TRANSACTION	
statement oltpmode	
can be set to override the value that was specified by the LOGMODE	
parameter of the DEFINE TRANSACTION	
statement netaddr	
can be set to override the value that was specified by the SIDEPROFILE	
parameter of the DEFINE TRANSACTION	
statement In addition to the transaction attributes defined in the PG DD, there are two security-related parameters, conversation security user ID and conversation security password, that can be overridden at TIP initialization time. The values for these parameters normally come from either the database link used to access the gateway or the Oracle database session. There are cases when the Oracle database user ID is not sufficient for accessing the OLTP system. The user ID and password overrides provide a way to specify those parameters to the OLTP system.	
The following overrides are currently supported:	
oltpuser	
can be set to override the user ID used to initialize the conversation with the OLTP oltppass	
can be set to override the password used to initialize the conversation with the OLTP The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM	
is specified in the gateway initialization file, and the OLTP system is configured to accept a user ID and password on incoming conversation requests.	
The transync	
(APPC SYNCLEVEL	
) and trannls	
(Globalization Support character set) are defined in the override record datatype, but are reserved for future use. The RHT SYNCLEVEL	
and Globalization Support name cannot be overridden.	
The client application might override the default attributes at TIP initialization for the following reasons:	
Client applications requiring overrides can use any combination of override and initialization parameters and might alter the combination at any time without regenerating the TIP or affecting applications that do not override parameters.	
To override the TIP defaults, an additional client application record variable must be declared as override_Typ	
datatype, values must be assigned to the override subfields, and the override record variable must be passed on the TIP initialization call from the client application.	
For example:	
Within the TIP, override attributes are checked for syntax problems and passed to the gateway server.	
The security requirements of the default and overridden OLTPs must be the same because the same gateway server is used in either conversation, as dictated by the database link names in the PGA RPC calls. The gateway server startup security mode is set at gateway server initialization time and passed unchanged to the OLTP at TIP or conversation initialization time.	
The client application should pass the transaction instance number, returned from a previous tip_init	
call, to identify which remote transaction program is affected and to identify any client application data parameters to be exchanged with the remote transaction program.	
In this CICS-DB2 inquiry example, we pass an employee number and receive an employee record back:	
The client application calls the TIP termination function as if it were any local PL/SQL function. For example:	
After a transaction instance number has been passed on a TIP terminate call to terminate the transaction, or after the remote transaction program has abended, that particular transaction instance number may be forgotten.	
The client application should include an exception handler that can clean up any active APPC conversations before the client application terminates. The sample client application provided in pgadb2id.sql	
contains an example of exception handling.	
Gateway exceptions are reported in the range PGA-20900 to PGA-20999. When an exception occurs, the TIP termination function should be called for any active conversations that have been started by prior calls to the TIP initialization function.	
For example:	
The remote transaction should also include provisions for error handling and debugging, such as writing debugging information to the CICS temporary storage queue area. Refer to the Oracle Database PL/SQL Language Reference for a discussion of how to intercept and handle Oracle exceptions.	
The TIP is a standard PL/SQL package and execute authority must be granted to users who call the TIP from their client application. In this example, we grant execute on the PGADB2I	
package to user SCOTT	
:	
Refer to the Oracle Database Administrator's Guide for further information.	
Before executing the client application, ensure that a connection to the host is established and that the receiving partner is available. In this example we use PL/SQL driver DB2IDRIV	
to execute the CICS-DB2 inquiry. To execute this client application, enter from SQL*Plus:	
)	
;Multiple TIPs can share the same APPC conversation with one or more Remote Host Transactions (RHTs) which are also sharing that same conversation. Two benefits derive from this feature:	
Mainframe OLTPs, such as IMS, allow transactions to share a single APPC conversation by passing it when the transaction calls another transaction. RHTs are defined to PGAU as single transactions with calls, inputs and outputs for which PGAU generates a single TIP with initialization, transfer and termination functions corresponding to that specific RHT.	
Logic generated into every TIP allows that TIP either:	
An APPC conversation is treated as a resource shared and managed by multiple TIPs. There is no requirement for any TIP to be the sole user of an APPC conversation.	
Any TIP generated at 3.4.0 or later can perform any of the following combinations of service:	
A single APPC conversation can be shared in the following ways:	
Without APPC conversation sharing, a single TIP must be defined which contains all functions and data for all RHTs which a client application might need to call. Creating TIPs with a superset of RHTs often causes such TIPs to be too large for PL/SQL to compile.	
Conversely, with APPC conversation sharing, each RHT (or even each RHT data exchange for those RHTs which perform multiple, different data exchange operations) can be defined in a single TIP which is smaller and less likely to exceed PL/SQL compilation limits.	
APPC conversation sharing is automatically available in every TIP generated at 3.4.0 or later. No TIPs generated before 3.4.0 can participate in APPC conversation sharing. TIPs generated before 3.4.0 must be regenerated using PGAU 3.4.0. or later to participate in APPC conversation sharing. PGAU is upward compatible and regeneration should be transparent, provided only the regenerated TIP body (tipname	
.pkb	
) is recompiled. If the TIP specification is also recompiled, the client application needs recompilation as well. Refer to Appendix E, "Tip Internals" for more detailed information.	
Definition and generation of TIPs is accomplished as previously discussed in Chapters 1, 2, and 3. No additional options or parameters need be specified.	
Run-time use of APPC conversation sharing is under the control of the client application. It is accomplished simply by calling the init function of one of the TIPs that share a conversation and passing the tranuse	
value returned to the other TIP functions as each is called in its desired order. Any TIP init function can be used, provided that all TIPs were defined with the same DEFINE TRANSACTION TPNAME	
or SIDEPROFILE	
value. The TPNAME	
or SIDEPROFILE	
value specifies which RHT to initialize.	
When the init function of an APPC conversation sharing-capable TIP is called to initialize a conversation, the tranuse	
value returned indicates conversation sharing is enabled. By passing that same tranuse	
value when calling functions in other TIPs, those other TIPs perform their transfers on the same conversation already initialized, provided that all TIPs involved were generated at Version 3.4.0 or later.	
TIPs generated at 3.4.0 or later of the database gateway use and expect different values for tranuse	
than do pre-3.4.0 TIPs. If a pre-3.4.0 TIP is used to initialize a conversation and its tranuse	
value is passed to a 3.4.0 or later generated TIP, the following exception is raised:	
Pre-3.4.0 generated TIPs do not detect the different tranuse	
value for shared conversations, however, and this can result in unpredictable errors.	
Caution: All TIPs called in a shared conversation must have been generated at 3.4.0 or later.No TIPs generated before 3.4.0 can participate in APPC conversation sharing.	
The tranuse	
values are incompatible between pre-3.4.0 and 3.4.0 or later releases. This should not pose a problem for you for the following reason: before 3.4.0, all RHT functions defined in a TIP had to be called through that TIPs functions, and the init function of that same TIP had to be called first to initialize the conversation. The tranuse	
value was only valid for the TIP which initialized it. Thus, unless you make programming changes, it is not possible for an existing application to accidentally mix tranuse	
values.	
Pre-3.4.0 TIPs and client applications can continue to be used without change and old client applications can call new 3.4.0 or later TIPs without change. This is made possible when an old TIP body is regenerated and compiled; the TIP now becomes capable of APPC conversation sharing, even though the old client application has not changed.	
None of the functions of a pre-3.4.0 TIP can share an APPC conversation. However, once a TIP is regenerated at 3.4.0 or later, any of its functions can share APPC conversations.	
You can use conversation sharing to circumvent a TIP that is too large to compile. This is identified by 'PLS-00123 - package too large to compile	
', or some other problem symptom such as PL/SQL compilation hanging. In this case you must choose which function calls to remove from the former TIP and define into new TIPs.	
Specifically, you must decide which PGAU DEFINE CALL	
statements and their related DEFINE DATA	
statements should be moved from the old PGAU control file (.ctl	
) into one or more new PGAU control files. In addition, you must decide which PGAU DEFINE TRANSACTION	
statements should be included in each new PGAU control file defining each new TIP.	
You must consider several PGAU statements; refer to Table 4-4 for a list of the PGAU statements and their descriptions:	
Table 4-4 PGAU Statements	
Statement	Description
---	---
Must be unique. They can be shared by all affected PGAU control files, provided they are defined to the Procedural Gateway Data Dictionary (PG DD) before being referenced by	
Must be unique. They need only be referenced by the new	
Specified for each new TIP desired and will reference those call definitions moved from the former large TIP to the new small TIPs. No transaction attributes will change. This allows any new TIP to perform the same initialization or termination with the same RHT as the former large TIP. The old	
Assume the existence of RHTs A	
, B	
and C	
, and that RHT A	
performs a menu selection and calls RHT B	
for a query function or RHT C	
for an update followed by a select function.	
You could define the following DATA	
and CALL	
s:	
DEFINE DATA	
choice ...	
DEFINE DATA	
input ...	
DEFINE DATA	
answer ...	
DEFINE DATA	
record ...	
DEFINE CALL menu_A callname(pick) parms(choice in);	
DEFINE CALL query_B callname(query) parms((input in),	
(answer out));	
DEFINE CALL update_C callname(update) parms(record in);	
DEFINE CALL select_C callname(select) parms(record out);	
The following example TIPs could be defined:	
Example 1	
This example does not use APPC conversation sharing, but is a valid TIP definition created before release 3.4.0, combining the functions of RHTs A	
, B	
and C	
.	
This TIP includes all data definitions and calls, and might be too large to compile. This TIP does not use APPC conversation sharing as there is only the one TIP, rhtABC	
. The RHTs do, however, perform their normal sharing of the conversation at the remote host. If the TIP was small enough to compile, the client application calls TIP functions as follows:	
Example 2	
This example demonstrates defining a set of TIPs with APPC conversation sharing, separating the functions of RHTs A	
, B	
and C	
into three TIPs:	
Each TIP includes only the call and data it requires, and each TIP automatically performs APPC conversation sharing. The client application calls these functions as follows:	
The only client application difference between the two examples is in the schema qualifier on each of the TIP calls. This is because the function being called is in a different TIP which has a different package name in the database.	
Only new DEFINE TRANSACTION	
statements were needed to make use of APPC conversation sharing. The CALL	
and DATA	
definitions were used as-is. This means the old TIP rhtABC	
is still defined as it was and might still be too large to compile.	
Example 3	
If you performed Sample 2 but you still believe that the TIP may be too large to compile, try this:	
TIP rhtABC	
has had three functions removed so it is now smaller and more likely to compile. TIP rhtB	
has one function and TIP rhtC	
has been separated into two TIPs even though the corresponding host functions remain in a single RHT.	
The client application calls these functions as follows:	
A different TIP is used for initialization, illustrating that all TIPs contain the init and term functions, and because the DEFINE TRANSACTION	
statements all specified the same tpname(RHTA)	
, the same remote host transaction is always called for initialization.	
TIP default override parameters are processed in the TIP init function which was called to perform initialization. Once the APPC conversation is established, no further sharing of overriding parameters is necessary. You need do nothing more than pass the overrides to the TIP init function.	
TIP diagnostic parameters are shared among all TIPs sharing a given conversation. In effect, requesting diagnostics of the TIP performing initialization causes the same diagnostics to be requested of all TIPs sharing the conversation. Requesting diagnostics from only one TIP of several sharing a conversation is not possible. The application designer or user need only pass the TIP runtime trace controls to the TIP init function.	
COBOL presently only supports double byte character sets (DBCS) for PIC G	
datatypes.	
PGAU processes COBOLII PIC G	
datatypes as PL/SQL VARCHAR2	
variables and generates TIPs which automatically convert the data according to the Oracle NLS_LANGUAGE	
s specified for the remote host data and the local Oracle data.	
These Oracle NLS_LANGUAGE	
s can be specified as defaults for all PIC G	
data exchanged by the TIP with the remote transaction (see DEFINE TRANSACTION	
...	
REMOTE_MBCS	
or LOCAL_MBCS	
). The Oracle NLS_LANGUAGE	
s for any individual PIC G	
data item can be further overridden (see REDEFINE DATA	
...	
REMOTE	
or LOCAL_LANGUAGE	
).	
DBCS data can be encoded in any combination of supported DBCS character sets. For example, a remote host application which allows different codepages for each field of data in a record is supported by the Oracle Database Gateway MBCS support.	
Use of REDEFINE DATA ... REMOTE_LANGUAGE	
or LOCAL_LANGUAGE	
on PIC X	
items is also supported. Thus a TIP can perform DBCS or MBCS conversions for specified PIC X	
data fields, in addition to SBCS conversions by default for the remaining PIC X	
data fields. Default SBCS conversion is according to the DEFINE TRANSACTION... NLS_LANGUAGE	
and local Oracle default LANGUAGE	
environment values.	
When PGAU is generating a TIP, the PIC G	
datatypes are converted to PL/SQL VARCHAR2	
datatypes. After conversion by the TIP, received 'PIC G' VARCHAR2	
datatypes can have a length less then the maximum due to deletion of shift-out and shift-in meta characters, and sent 'PIC G'	
RAWs will have the shift-out and shift-in characters inserted as required by the remote host character set specified.	
This is different from the conversions performed for PIC X	
data which is always a known fixed-length and hence CHAR	
datatypes are used in TIPs for PIC X	
data fields. However, even when the PIC X	
field contains DBCS or MBCS data, a CHAR	
variable is still used and padded with blanks if needed.	
Some remote host applications bracket a PIC G	
field with PIC X	
bytes used for shift-out, shift-in meta-character insertion. Such a COBOL definition might look like:	
This is not processed correctly by PGAU, because all three fields are defined, and consequently treated, as separate data items when conversion is performed.	
To be properly processed, the definition input to PGAU should be:	
The PGAU REDEFINE DATA	
statement can redefine the 3-field definition to the 1-field definition by specifying USAGE(SKIP)	
on fields SO	
and SI	
, and '05 MY_MBCS_DATA PIC G(51).'	
to redefine MY_MBCS_DATA	
. The three REDEFINE	
statements can be placed in the PGAU input control file, and thus the remote host definition need not be altered.	
The remote transaction program must include mapped APPC verbs to initiate, communicate, and terminate the APPC conversation. However, when the remote transaction program is terminal-oriented, the following options are available:	
LINK	
is used to implement this technique. PGADB2I	
, we use CICS and its associated mapped APPC verbs as follows: ASSIGN	
accepts the conversation initiated by the gateway. RECEIVE	
receives the arguments. SEND	
ends the results. RETURN	
terminates the conversation. Execute privileges must be explicitly granted to callers of TIPs or procedures. This privilege cannot be granted through a role.	
Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace and ptrace procedures. Refer to the "Configuring PGAU" section in the chapter appropriate for your communications protocol in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64, Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows, and the Oracle Database Rules Manager and Expression Filter Developer's Guide for more information.	
For example, on Microsoft Windows:	
On UNIX based systems:	
After a TIP has been developed, the TIP user must be granted execute privileges on the TIP by the TIP owner. The TIP owner is usually PGAADMIN	
, but can be another user who has been granted either the PGDDDEF	
or PGDDGEN	
roles.	
For example, on Microsoft Windows:	
On UNIX based systems:	
where database_specification_string	
is the Oracle Net identifier for the Oracle database where the gateway UTL_RAW	
and UTL_PG	
components were installed. This is the same Oracle database where the TIPs are executed and where grants on the TIPs are performed from the TIP owner user ID.	
A SQL script for performing these grants is provided in the %ORACLE_HOME%\\dg4appc\\admin	
directory on Microsoft Windows and in the $ORACLE_HOME/dg4appc/admin	
directory on UNIX based system. The pgddausr.sql	
script performs the grants for private access to the packages by a single TIP user. If private grants are to be used, the pgddausr.sql	
script must be run once for each TIP user's user ID.	
To run these scripts, use SQL*Plus to connect to the Oracle database as user PGAADMIN	
. From SQL*Plus, run the pgddausr.sql	
script from the %ORACLE_HOME%\\dg4appc\\admin	
directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin	
directory on UNIX based system. The script performs the necessary grants as previously described. You are prompted for the required user IDs, passwords, and database specification strings. If you are using private grants, repeat this step for each user ID requiring access to the packages.	
No script has been provided to perform public grants. To do this, issue the following commands:	
For Microsoft Windows:	
For UNIX based systems:	
Commit-confirm allows the updating of local Oracle resources to occur in the same Oracle transaction as the updating of non-Oracle resources accessed through the Oracle Database Gateway for APPC.	
Read this chapter to familiarize yourself with the elements and functions of commit-confirm.	
You will find instructions for configuring gateway components for commit-confirm on an SNA environment in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows. Refer to Chapter 5, "Configuring Your Network" and Chapter 6, "Gateway Configuration Using the SNA Communications Protocol" of the installation and configuration guides for specific information.	
This chapter includes the following sections:	
Important: If you are planning to implement commit-confirm, then you should already have configured the components. Depending on your platform, refer to Chapter 12 of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Chapter 9 of the Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows for instructions on its configuration.	
Commit-confirm is a special implementation of two-phase commit that allows a database or gateway that does not support full two-phase commit to participate in distributed update transactions with other databases or gateways that do support full two-phase commit. In this implementation, the commit-confirm site is always the first to be committed, after all other sites have been prepared. This allows all sites to be kept in sync, because if the commit-confirm site fails to commit successfully, all other sites can be rolled back.	
Within an Oracle distributed transaction, all work associated with that transaction is assigned a common identifier, known as the Oracle Global Transaction ID. This identifier is guaranteed to be unique, so that it can be used to exclusively identify a particular distributed transaction. The key requirement for commit-confirm support is the ability for the commit-confirm site (in this case, the Oracle Database Gateway for APPC) to be able to log the Oracle Global Transaction ID as part of its unit of work, so that if a failure occurs, the gateway's recovery processing can determine the status of a particular Oracle Global Transaction ID by the presence or absence of a log entry for that transaction. A new Oracle Global Transaction ID is generated after every commit or rollback operation.	
The Oracle Database Gateway for APPC implements commit-confirm using LU6.2 SYNCLEVEL 1	
. This is similar to the implementation of single-site update, with the added advantage that resources on both the Oracle site and the OLTP being accessed by the gateway can be updated and kept in sync. The main difference is that the commit-confirm implementation requires some additional programming in the OLTP transaction to perform the transaction logging necessary for recovery support.	
Since commit-confirm uses LU6.2 SYNCLEVEL 1	
, it can be supported by any OLTP that supports APPC, including CICS Transaction Server for z/OS and IMS/TM. The Oracle Database Gateway for APPC provides sample commit-confirm applications for both CICS Transaction Server for z/OS and IMS/TM.	
With CICS Transaction Server for z/OS, the standard command-level EXEC CICS interface can be used for all APPC communications. In addition, the CPI-C interface can be used if it is preferred. A sample DB2 update transaction written in COBOL using the EXEC CICS interface is provided with the gateway. Any language supported by CICS Transaction Server for z/OS can be used for writing commit-confirm transactions.	
With IMS/TM, the CPI-C interface must be used, making the IMS transaction an "explicit APPC transaction," as referred to in the IBM IMSCICS Transaction Server for z/OS manuals. This is necessary because it is the only way that the LU6.2 SYNCLEVEL 1	
control flows are accessible to the IMS transaction. When using "implied APPC" where "GU" from the IOPCB and "ISRT" to the IOPCB are used for receiving and sending data, there is no way for the IMS transaction to access the LU6.2 SYNCLEVEL 1	
control flow, making it impossible to use this method for commit-confirm. A sample DLI database update transaction written in COBOL using the CPI-C APPC interface is provided with the gateway. Any language supported by IMS and CPI-C can be used for writing commit-confirm transactions.	
The following components are required to support commit-confirm:	
The gateway server supports commit-confirm when PGA_CAPABILITY=COMMIT_CONFIRM	
is specified in the gateway initialization file. When the gateway server is running with commit-confirm enabled, it will connect to a local Oracle database where it maintains a commit-confirm transaction log, similar to the Oracle two-phase commit log stored in the DBA_2PC_PENDING	
table. The gateway's transaction log is stored in the PGA_CC_PENDING	
table. A row is stored in this table for each in-flight transaction and remains there until the transaction has completed. The life span of rows in PGA_CC_PENDING	
is normally quite short, lasting only from the time the commit is received by the gateway until the time the Oracle database completes all commit processing and tells the gateway to forget the transaction.	
The commit-confirm gateway SID should be reserved for use only to invoke update transactions that implement commit-confirm. There is some extra overhead involved in the setup for logging when PGA_CAPABILITY	
is set to COMMIT_CONFIRM	
. Read-only transactions should be invoked through a separate gateway SID with PGA_CAPABILITY	
set to READ_ONLY	
so that they will not incur the extra overhead.	
An Oracle database must be available for use by the gateway server for storing the PGA_CC_PENDING	
table. For maximum performance and reliability, Oracle recommends that this Oracle database reside on the same system as the gateway server.	
A commit-confirm transaction log database must be defined to the OLTP system being accessed. This database must be recoverable and must be accessible by the OLTP as part of the same unit of work as the OLTP application's databases, so that updates to the transaction log database will be kept in sync with updates to the application's databases in a single unit of work.	
The commit-confirm transaction log database need contain only the Oracle Global Transaction ID and a date/time stamp. The Oracle Global Transaction ID is 169 bytes long and must be the key field. The date/time stamp is used for purging old entries that can be left in the log after certain failure scenarios.	
For simplicity, all commit-confirm applications under a particular OLTP should share the same commit-confirm transaction log.	
Code must be added to each OLTP transaction invoked by a commit-confirm gateway to perform the transaction logging required by the gateway's commit-confirm implementation. This code must receive the Oracle Global Transaction ID from the gateway and write that information into the OLTP commit-confirm transaction log database. For maximum flexibility and ease of use, this code can be written as a subroutine callable from any commit-confirm transaction on your OLTP system.	
This code must be executed at the beginning of each commit-confirm transaction prior to the first APPC receive and then immediately after each COMMIT	
or ROLLBACK	
in the transaction. This ensures that the logging is done at the beginning of each unit of work.	
A separate APPC transaction must be created on the OLTP system that can be started by the gateway to forget a transaction once it has been successfully committed and to query a transaction's state during recovery processing. This transaction deletes the entry for a particular Oracle Global Transaction ID from the OLTP commit-confirm transaction log database during forget processing and queries the entry for a particular Oracle Global Transaction ID from the OLTP commit-confirm transaction log database during recovery processing.	
Note: Make sure that the gateway initialization parameters and the OLTP parameters are properly configured, as described in Chapter 11 of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Chapter 8 of the Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows depending on your platform.	
When designing commit-confirm applications for use with the Oracle Database Gateway for APPC, there are some requirements you must meet to provide the ability for the gateway to determine the state of a transaction in the event of a failure. If these requirements are not met, attempting to use an application with a commit-confirm gateway will produce unpredictable results.	
The first thing that must be done by an OLTP transaction invoked by a commit-confirm gateway is to receive the Oracle Global Transaction ID from the gateway and log it into the OLTP commit-confirm transaction log database. This must be done before the normal data flow between the OLTP transaction and the Oracle application begins. The gateway always sends the Oracle Global Transaction ID as the very first data item.	
If the OLTP transaction is a one-shot transaction, this is the only change needed. If the transaction is a persistent transaction that performs more than one unit of work (issues more than one commit or rollback), then a new Oracle Global Transaction ID must be received and logged after every COMMIT	
or ROLLBACK	
.	
The Oracle Global Transaction ID is sent by the gateway in a variable-length record with a maximum length of 202 bytes. The first 32 bytes contain a special binary string used to verify that the data came from the gateway and not from some other application. The next 1 byte is a reserved field. The Oracle Global Transaction ID is next, with a maximum length of 169 bytes. You must log the reserved field and the Oracle Global Transaction ID, as well as a date/time stamp and any other information you wish to log. Note that the Oracle Global Transaction ID must be the key field for the log database so that the forget/recovery transaction can use the Oracle Global Transaction ID to directly access a log entry.	
Note: If your OLTP is IMS/TM, you must add a PCB for the commit-confirm transaction log database to the PSB for each transaction that you will use with a commit-confirm gateway. This PCB must be the first PCB in the PSB.	
The architecture of the commit-confirm implementation in the Oracle Database Gateway for APPC consists of three main components:	
PGA_CC_PENDING	
and PGA_CC_LOG	
) This section describes the role each component plays in the operation of commit-confirm and how these components interact.	
The Oracle database is the controlling component in the commit-confirm architecture. It tells the gateway server when to commit a transaction and when to rollback a transaction. It does the same with all other servers participating in a distributed transaction. When a failure has occurred, it is the Oracle database acting as the integrating server which drives the recovery process in each participating server, including the gateway server.	
The gateway server performs the task of converting instructions from the Oracle database into LU6.2 operations and then logs the transaction into the logging server. The gateway server stores the log information in a table called PGA_CC_PENDING	
on the logging server. If a failure occurs during transaction processing, the gateway server determines which error should be returned to the Oracle database.	
The logging server is an Oracle database available to the gateway server for storing and accessing its commit-confirm log information. The logging server need not be the same Oracle database which acts as the integrating server. Because the logging server is an integral component of gateway commit-confirm operations, the best place for it to reside is on the same system as the gateway server. This allows the communication between the gateway server and the logging server to use interprocess communications, providing a high-speed, low overhead, local connection between the components.	
There is a specific set of interactions that occur between the components. They are:	
The Oracle database drives all actions by the gateway server. At the request of the Oracle application, the integrating server can instruct the gateway server to begin a new Oracle transaction, start a commit sequence, start a rollback sequence, or start a forget sequence. It can also call gateway remote procedural call (RPC) functions (PGAINIT	
, PGAXFER	
, PGATERM	
) on behalf of the Oracle application.	
The gateway server calls the logging server to insert and delete rows from its PGA_CC_PENDING	
table. This is actually done by calling a PL/SQL stored procedure, PGA_CC_LOG	
, in the logging server to reduce the number of open cursors required by the gateway server for performing its logging. Only a single cursor is needed by the gateway server for logging.	
The flow of control for a successful commit between an Oracle application and an OLTP transaction is described in the following section and illustrated in Figure 5-1, "Commit-Confirm Flow with Synclevel 1". The figure assumes that both Oracle and OLTP resources have been updated. The following steps in Section 5.6.1 outline the commit-confirm logic flow.	
COMMIT	
to the Oracle database. PREPARE	
to each participant in the distributed transaction other than the gateway. PREPARE OK	
to the Oracle database. COMMIT	
to the gateway. The gateway receives the COMMIT	
from the Oracle database and inserts a new pending transaction row into the PGA_CC_PENDING	
table. CONFIRM	
to the OLTP application. The OLTP application receives the CONFIRM	
request in the form of a status from the last APPC RECEIVE	
. COMMIT	
using an appropriate OLTP function. The OLTP commits all database updates made by the application since the last COMMIT	
, including the commit-confirm transaction log update. COMMIT	
. CONFIRMED	
to the gateway. CONFIRMED	
and returns COMMIT OK	
to the Oracle database. COMMIT	
to each participant in the distributed transaction other than the gateway. COMMIT OK	
to the Oracle database. FORGET	
to the gateway. FORGET	
and starts a new APPC conversation with the FORGET/RECOVERY	
transaction at the OLTP, sends it a FORGET	
request and an APPC CONFIRM	
. The FORGET/RECOVERY	
transaction receives the FORGET	
request and deletes the entry from the commit-confirm transaction log for the current Oracle transaction, and commits the delete. FORGET/RECOVERY	
transaction sends an APPC CONFIRMED	
to the gateway to indicate that the FORGET	
was processed, and then terminates. The gateway receives the CONFIRMED	
and deletes the pending transaction row from the PGA_CC_PENDING	
table. FORGET OK	
to the Oracle database. Figure 5-1, "Commit-Confirm Flow with Synclevel 1" illustrates the Commit-Confirm logic flow described in the previous section.	
The commit-confirm transaction log consists of a single table, PGA_CC_PENDING	
. This table contains a row for each in-flight Oracle transaction that includes the commit-confirm gateway. The table is maintained by the gateway server and is similar in function to the Oracle database's DBA_2PC_PENDING	
table. Note that a row is not inserted into this table until a COMMIT	
is received by the gateway and the row is deleted when a FORGET	
is received by the gateway. There is no involvement by the gateway during the PREPARE	
phase.	
The PGA_CC_PENDING	
table contains the following columns:	
GLOBAL_TRAN_ID	
This is the Oracle Global Transaction ID for the transaction. It is identical to the corresponding column in the DBA_2PC_PENDING	
table.	
SIDE_NAME	
This is the Side Information Profile name that was used by the gateway to allocate the APPC conversation with the target LU. It corresponds to the SIDENAME	
parameter passed to the PGAINIT	
gateway function.	
LU_NAME	
This is the fully-qualified partner LU name of the target LU. This value is either the LU name from the Side Information Profile or the LUNAME	
parameter passed to the PGAINIT	
gateway function. This name fully identifies the OLTP system on which the transaction was executed.	
MODE_NAME	
This is the Mode name that was used by the gateway to allocate the APPC conversation with the target LU. The value is either the Mode name from the Side Information Profile or the MODENAME	
parameter passed to the PGAINIT	
gateway function.	
TP_NAME	
This is the transaction program name executed at the target LU. The value is either the TP name from the Side Information Profile or the TPNAME	
parameter passed to the PGAINIT	
gateway function. This name fully identifies the OLTP transaction program that was executed.	
This chapter contains the commands and instructions necessary to operate the pg4tcpmap	
tool. This tool allows relevant parameters to map to a gateway using TCP/IP support for IMS Connect. The tool will be used to populate the PGA_TCP_IMSC	
table.	
This chapter contains the following sections:	
If your gateway is using TCP/IP support for IMS Connect, then you must use the pg4tcpmap	
tool to prompt PGAINIT	
to provide the required TCP/IP parameters as input.	
The pg4tcpmap	
tool must be run before executing any PL/SQL gateway statements in order to populate the PGA_TCP_IMSC	
table, which utilizes the corresponding TIPs.	
Note that you do not need to rerun the pg4tcpmap	
tool for additional IMS transactions if they share the same IMS Connect attributes.	
The PGA_TCP_IMSC	
table was created when you executed the %ORACLE_HOME%\\dg4appc\\admin\pgaimsc.sql	
script on Microsoft Windows or $ORACLE_HOME/dg4appc/admin/pgaimsc.sql	
script on UNIX based systems during your gateway configuration. If you need further information about creating the PGA_TCP_IMSC	
table, then depending on your platform, refer to Chapter 13 of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Chapter 10 of Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows .	
In a PGAINIT	
procedure call, the user must specify a Side Profile Name and TP Name. The values of these parameters will be inserted into a table named PGA_TCP_IMSC	
.	
Configure userid and password before running gateway mapping tool	
Before executing the pg4tcpmap	
tool, you must configure a valid userid and password and TNSNAMES	
alias for the Oracle database where the PGA_TCP_IMSC	
table resides. You must specify the userid, password, and database in the PGA_TCP_USER	
, PGA_TCP_PASS	
, and PGA_TCP_DB	
parameters, respectively, located in the gateway initialization file %ORACLE_HOME%\\dg4appc\\admin\initsid.ora	
for Microsoft Windows and $ORACLE_HOME/dg4appc/admin/initsid.ora	
for UNIX based systems.	
Table 6-1 describes the parameter information contained in the column names, types and contents column found in the PGA_TCP_IMSC	
table.	
Table 6-1 PGA_TCP_IMSC Table Columns	
Column Name	Type
---	---
This parameter has no SNA implication. It is simply a name that is defined in the Unique index.	
The OLTP TCP/IP address or the hostname.	
The OLTP port number.	
blank: no request for Acknowledgement or Deallocate. The default is "	
Time delay for the receive to the datastore after an	
The default is "	
Socket Connection Type	
The default is "	
Specifies the name of the client ID that is used by IMS Connect. The default is '	
It specifies the commit mode:	
The default is "	
Specifies the datastore names (IMS subsystem ID) 8 bytes. This parameter must be specified.	
Specifies the IMS	
Specifies the RACF group name. The default is " You need to specify the RACF group name if you have set Refer to "PGA_SECURITY_TYPE" in Table B-1 "PGA Parameters on Gateway Using TCP/IP for IMS Connect" in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.. Refer to "TCP/IP Security Option SECURITY=PROGRAM" in Chapter 14 of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Chapter 11 of the Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows to learn more about how to set the RACF userid and RACF password.	
Specifes the IMS Connect user exit IRM ID. If you do not specify this parameter it will default to	
Specifies whether the IMS Connect user exit return data includes the	
The default value is	
Follow these steps to prepare for running the pg4tcpmap	
tool before you run the gateway.	
ORACLE_HOME	
and ORACLE_SID	
for the Oracle database. PGAADMIN	
, has been created in the Oracle database and you can talk to the database. Issue %ORACLE_HOME%\\dg4appc\\admin\pgacr8au.sql	
on Microsoft Windows.	
Or,	
$ORACLE_HOME/dg4appc/admin/pgacr8au.sql	
on UNIX based systems.	
initsid.ora	
file must contain appropriate parameters. Set the following parameters: PGA_TCP_USER	
PGA_TCP_PASS	
PGA_TCP_DB	
TRACE_LEVEL=255	
LOG_DESTINATION=<valid directory>	
Refer to Chapter 8, "Troubleshooting" for information about tracing.	
PGA_TCP_IMSC	
table has been created. Issue: %ORACLE_HOME%\\dg4appc\\admin\pgaimsc.sql	
on Microsoft Windows.	
Or,	
$ORACLE_HOME/dg4appc/admin/pgaimsc.sql	
on UNIX based systems.	
Figure 6-1 illustrates the relationship between the gateway, the database and the pg4tcpmap tool in mapping the Side Profile Name to TCP/IP and IMS Connect attributes in the PGA_TCP_IMSC	
table.	
A copy of the screen output file for the pg4tcpmap	
tool is located in Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.	
An example of a trace file from a sample pg4tcpmap	
execution can be found in Chapter 8, "Troubleshooting".	
There are two commands for the pg4tcpmap	
tool:	
PGA_TCP_IMSC	
table; For Microsoft Windows, issue the following command from the gateway Oracle home %ORACLE_HOME%\bin	
directory:	
For UNIX based systems, issue the following command from the gateway Oracle home $ORACLE_HOME/bin	
directory:	
The gateway release number, copyright information, along with the following text appears:	
Enter <i>	
, and after that, you need only enter the required parameters.	
For Microsoft Windows, issue the following command from the gateway Oracle home %ORACLE_HOME%\bin	
directory:	
For UNIX based systems, issue the following command from the gateway Oracle home $ORACLE_HOME/bin	
directory:	
The gateway release number, copyright information, along with the following text appears:	
Enter <d>	
, and the pg4tcpmap tool will ask you what Side Profile Name you want to delete.	
If the row does not exist, you will receive an ORA-1403 error message.	
Note: Do not use SQL*Plus to update thePGA_TCP_IMSC table. If you have problems or incorrect data in the table, use %ORACLE_HOME%\\dg4appc\\admin\pgaimsc.sql on Microsoft Windows or $ORACLE_HOME/dg4appc/admin/pgaimsc.sql on UNIX based systems to re-create the table and its index.	
Use the regular SQL*Plus select statement to query the table.	
Example for Microsoft Windows:	
Example for UNIX based systems:	
This chapter discusses how you will call a TIP and control a remote host transaction if your gateway uses TCP/IP support for IMS Connect. It also provides you with the steps for preparing and executing a gateway transaction.	
This chapter assumes:	
PGA_TCP_IMSC	
mapping table has been populated, using the pg4tcpmap	
tool, with the SIDE PROFILE	
name, TCP/IP hostname, port number and other IMS Connect parameters. This chapter contains the following sections:	
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP using definitions you provide. The client application can then call the TIP to access the remote host transaction. Chapter 2, "Procedural Gateway Administration Utility", discusses the use of PGAU in detail.	
This overview explains what you must do in order to call a TIP and control a remote host transaction.	
The gateway receives PL/SQL calls from the Oracle database and issues TCP/IP calls to communicate with a remote transaction program.	
The following application programs make this possible:	
PGA_TCP_IMSC	
mapping table that has been populated, using the pg4tcpmap tool, with the SIDE PROFILE	
name as well as the TCP/IP hostname, port number and other IMS Connect parameters. pgtflip.pkb	
. This generated TIP includes at least three function calls that map to the remote transaction program: pgtflip_init	
initializes the conversation with the remote transaction program pgtflip_main	
exchanges application data with the remote transaction program pgtflip_term	
terminates the conversation with the remote transaction program Refer to Appendix E, "Tip Internals" for more information about TIPs, if you are writing your own TIP or debugging.	
The client application calls the three TIP functions with input and output arguments. In the example, the client application passes an input and the remote transaction and the remote transaction sends back the flipped input as an output.	
Table 7-1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the gateway using the example IMS Connect-IMS transaction.	
Table 7-1 Logic Flow of IMS Connect-IMS Example	
Client Application	Oracle TIP
---	---
calls tip_init	Calls
calls tip_main	Calls
calls tip_term	Call
A client application which utilizes the gateway to exchange data with a remote host transaction performs some tasks for itself and instructs the TIP to perform other tasks on its behalf. The client application designer must consequently know the behavior of the remote transaction and how the TIP facilitates the exchange.	
The following sections provide an overview of remote host transaction behavior, how this behavior is controlled by the client application and how TIP function calls and data declarations support the client application to control the remote host transaction. These sections also provide background information about what the TIP does for the client application and how the TIP calls exchange data with the remote host transaction.	
To prepare the client application for execution you must understand the remote host transaction requirements and then perform these steps:	
SIDEPROFILE	
name, defined in the .ctl	
file for the PGAU utility, to TCP/IP and IMS Connect attributes. Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in this guide for detailed information about mapping parameters.	
DEFINE DATA	
, DEFINE CALL	
, and DEFINE TRANSACTION	
statements. GENERATE	
. The content of a PGAU-generated TIP reflects the calls available to the remote host transaction and the data that has been exchanged. Understanding this content helps when designing and debugging client applications that call the TIP.	
A TIP is a PL/SQL package, and accordingly has two sections:	
The purpose of the TIP is to provide a PL/SQL callable public function for every allowed remote transaction program interaction. A remote transaction program interaction is a logically related group of data exchanges through one or more PGAXFER	
RPC calls. This is conceptually similar to a screen or menu interaction in which several fields are filled in, the enter key is pressed, and several fields are returned to the user. Carrying the analogy further:	
IN	
parameters on the TIP function call OUT	
parameters on the TIP function call IN	
and OUT	
parameters combined PGAXFER	
remote procedural call (RPC) The actual grouping of parameters that constitute a transaction call is defined by the user. The gateway places no restrictions on how a remote transaction program might correspond to a collection of TIP function calls, each call having many IN	
and OUT	
parameters.	
PGA users typically have one TIP per remote transaction program. How the TIP function calls are grouped and what data parameters are exchanged on each call depends on the size, complexity and behavior of the remote transaction program.	
Refer to Oracle's Oracle Database PL/SQL Language Reference for a discussion of how PL/SQL packages work. The following discussion covers the logic that must be performed within a TIP. Refer to the sample TIP and driver supplied in the %ORACLE_HOME%\dg4appc\demo\IMS	
directory on Microsoft Windows and in $ORACLE_HOME/dg4appc/demo/IMS	
directory on UNIX based systems, in files pgtflip.pkh	
, pgtflip.pkb	
, and pgtflipd.sql	
.	
From a database gateway application perspective, there are three main types of remote host transactions:	
You should be familiar with the remote host transaction types. Refer to the IBM IMS Connect Guide and Reference for a full description of these transaction types.	
A remote host transaction program and its related TIP with client application must correspond on two key requirements:	
CALL	
s are defined These DATA	
and CALL	
definitions are then included by reference in a TRANSACTION	
definition.	
Make certain that the SIDEPROFILE	
name has been mapped to TCP/IP and IMS Connect attributes, using the pg4tcpmap	
tool.	
Using data definitions programmed in the language of the remote host transaction, the PGAU DEFINE DATA	
command stores in the PG DD the information needed for PGAU GENERATE	
to create the TIP function logic to perform:	
IN	
parameters supplied by the receiving remote host transaction OUT	
parameters supplied by the sending remote host transaction PGAU determines the information needed to generate the conversion and buffering logic from the data definitions included in the remote host transaction program. PGAU DEFINE DATA	
reads this information from files, such as COBOL copy books, or in-stream from scripts and saves it in the PG DD for repeated use. The Gateway Administrator needs to transfer these definition files from the remote host to the Oracle host where PGAU runs.	
From the data definitions stored in the PG DD, PGAU GENERATE	
determines the remote host datatype and matches it to an appropriate PL/SQL datatype. It also determines data lengths and offsets within records and buffers and generates the needed PL/SQL logic into the TIP. Refer to the PGAU "DEFINE DATA" statement in Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE DATA Statements" in Appendix F, "Administration Utility Samples" for more information.	
All data that are referenced as parameters by subsequent calls must first be defined using PGAU DEFINE DATA	
. Simple data items, such as single numbers or character strings, and complex multi-field data aggregates, such as records or structures, can be defined. PGAU automatically generates equivalent PL/SQL variables and records of fields or tables for the client application to reference in its calls to the generated TIP.	
As discussed, a parameter might be a simple data item, such as an employee number, or a complex item, such as an employee record. PGAU DEFINE DATA	
automatically extracts the datatype information it needs from the input program data definition files.	
In this example, FLIPIN	
and FLIPOUT	
are the arguments to be exchanged.	
A PGAU DEFINE DATA	
statement must therefore be issued for each of these parameters:	
Note that a definition is not required for the trannum	
argument. This is the APPC conversation identifier and does not require a definition in PGAU.	
The requirement to synchronize TCP/IP send() and receive() means that when the remote transaction program expects data parameters to be input, it issues TCP/IP receive() to read the data parameters. Accordingly, the TIP must cause the gateway to issue TCP/IP send() to write the data parameters to the remote transaction program. The TIP must also cause the gateway to issue TCP/IP receive() when the remote transaction program issues TCP/IP send().	
The PGAU DEFINE CALL	
statement specifies how the generated TIP is to be called by the client application and which data parameters are to be exchanged with the remote host transaction for that call. Each PGAU DEFINE CALL	
statement might specify the name of the TIP function, one or more data parameters, and the IN/OUT	
mode of each data parameter. Data parameters must have been previously defined with PGAU DEFINE DATA	
statements. Refer to "DEFINE CALL" in Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE CALL Statements" in Appendix F for more information.	
PGAU DEFINE CALL	
processing stores the specified information in the PG DD for later use by PGAU GENERATE	
. PGAU GENERATE	
then creates the following in the TIP package specification:	
CALL	
defined with PL/SQL parameters for each DATA	
definition specified on the CALL	
The client application calls the TIP public function as a PL/SQL function call, using the function name and parameter list specified in the PGAU DEFINE CALL	
statement. The client application might also declare, by reference, private variables of the same datatype as the TIP public data parameters to facilitate data passing and handling within the client application, thus sharing the declarations created by PGAU GENERATE	
.	
In this example, the following PGAU DEFINE CALL	
statement must be issued to define the TIP public function:	
The number of data parameters exchanged between the TIP and the gateway on each call can vary at the user's discretion, as long as the remote transaction program's SEND/RECEIVE	
requests are satisfied. For example, the remote transaction program data exchange sequence might be:	
The resulting TIP/application call sequence could be:	
To define these four public functions to the TIP, four PGAU DEFINE CALL	
statements must be issued, each specifying its unique public function name (tip_callx	
) and the data parameter list to be exchanged. Once a data item is defined using DEFINE DATA	
, it can be referenced in multiple calls in any mode (IN	
, OUT	
, or IN OUT	
). For example, parm5	
could be used a second time in place of parm6	
This implies the same data is being exchanged in both instances, received into the TIP and application on tip_call2	
and returned, possibly updated, to the remote host in tip_call4	
.	
Notice also that the remote transaction program's first five written fields are read by two separate TIP function calls, tip_call1	
and tip_call2	
. This could also have been equivalently accomplished with five TIP function calls of one OUT	
parameter each or a single TIP function call with five OUT	
parameters. Then the remote transaction program's first read field (field6	
) and subsequent written field (field7	
) correspond to a single TIP function call (tip_call3	
) with a single IN OUT	
parameter (parm6	
).	
This use of a single IN OUT	
parameter implies that the remote transaction program's datatype for field6	
and field7	
are both the same and correspond to the conversion performed for the datatype of parm6	
. If field6	
and field7	
were of different datatypes, then they have to correspond to different PL/SQL parameters (for example, parm6 IN	
and parm7 OUT	
). They could still be exchanged as two parameters on a single TIP call or one parameter each on two TIP calls, however.	
Lastly, the remote transaction program's remaining three RECEIVE	
fields are supplied by tip_call4	
parameters 8-10. They also could have been done with three TIP calls passing one parameter each or two TIP calls passing one parameter on one call and two parameters on the other, in either order. This flexibility permits the user to define the correspondence between the remote transaction program's operation and the TIP function calls in whatever manner best suits the user.	
Each TIP public function first sends all IN	
parameters, before it receives any OUT	
parameters. Thus, a remote transaction program expecting to send one field and then receive one field must correspond to separate TIP calls.	
For example:	
PGAXFER	
RPC checks first for parameters to send, but finds none and proceeds to receive parameters:	
PGAXFER	
RPC processes parameters to send and then checks for parameters to receive, but finds none and completes; therefore, a single TIP public function with an OUT	
parameter followed by an IN	
parameter does not work, because the IN	
parameter is processed first--regardless of its position in the parameter list.	
The remote host transaction is defined with the PGAU DEFINE TRANSACTION	
statement with additional references to prior definitions of CALL	
s that the transaction supports.	
You specify the remote host transaction attributes, such as:	
Note: The PL/SQL package name is specified when the transaction is defined; this is the name by which the TIP is referenced and which the public function calls to be included within the TIP. Each public function must have been previously defined with a PGAUDEFINE CALL statement, which has been stored in the PG DD. If you do not specify a package name (TIP name) in the GENERATE statement, the transaction name you specified will become the package name by default. In that case, the transaction name (tname) must be unique and must be in valid PL/SQL syntax within the database containing the PL/SQL packages. For more information, refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE TRANSACTION Statement" in Appendix F, "Administration Utility Samples".	
In this example, the following DEFINE TRANSACTION	
statement is used to match this information with the inserted row in the PGA_TCP_IMSC	
table.	
Once a TIP is created, a client application must be written to interface with the TIP. A client application that calls the TIP functions must include five logical sections:	
The user declarations section of the tipname	
.doc	
file documents the required declarations.	
When passing PL/SQL parameters on calls to TIP functions, the client application must use the exact same PL/SQL datatypes for TIP function arguments as are defined by the TIP in its specification section. Assume, for example, the following is in the TIP specification, or tipname	
.doc	
:	
Where Table 7-2 provides a description of each of the parameters:	
Table 7-2 Function Declarations	
Parameter	Description
---	---
The TIP function name as defined in the package specification.	
The remote transaction instance parameter returned from the TIP init function identifying the conversation on which this TIP call is to exchange data.	
The PL/SQL record datatype declared in the	
Is a PL/SQL atomic datatype.	
Is a PL/SQL record field corresponding to a remote transaction program record field.	
In the client application PL/SQL atomic datatypes should be defined as the exact same datatype of their corresponding arguments in the TIP function definition. The following should be coded in the client application before the BEGIN	
command:	
TIP datatypes need not be redefined. They must be declared locally within the client application, appearing in the client application before the BEGIN	
:	
Table 7-3 describes the meaning of each procedure declaration:	
Table 7-3 Procedure Declarations	
Item	Description
---	---
Is a PL/SQL record exchanged with the TIP and used within the client application.	
Is the PL/SQL package (TIP) name as stored in Oracle database. This is the same value as in the statement	
Is the PL/SQL record datatype declared in the	
Refer to the tipname	
.doc	
content file for a complete description of the user declarations you can reference.	
The client application calls the TIP public function as if it were any local PL/SQL function:	
In the TCP/IP IMS Connect example, the PL/SQL driver pgtflipd.sql	
, which is located in %ORACLE_HOME%\dg4appc\demo\IMS	
directory on Microsoft Windows and in $ORACLE_HOME/dg4appc/demo/IMS	
directory on UNIX based systems, is the client application and includes the following declaration:	
The call to initialize the conversation serves several purposes:	
PGAINIT	
remote procedural call (RPC), which in turn establishes communication with the remote transaction program (RTP), and returns a transaction instance number to the application. Optionally, calls to initialize the conversation can be used to:	
PGAU-generated TIPs provide four different initialization functions that client applications can call. These are overloaded functions which all have the same name, but vary in the types of parameters passed.	
Three initialization parameters are passed:	
tranuse	
parameter is required on all TIP initializations. tipdiag	
parameter is optional. Refer to Chapter 8, "Troubleshooting" for a discussion of TIP diagnostics. override	
parameter is optional. The following four functions are shown as they might appear in the TIP Content documentation file. Examples of client application use are provided later.	
This transaction instance number (shown in examples as tranuse	
) must be passed to subsequent TIP exchange and terminate functions. It identifies to the gateway on which TCP/IP conversation--and therefore which iteration of a remote transaction program--the data is to be transmitted or communication terminated.	
A single client application might control multiple instances of the same remote transaction program or multiple different remote transaction programs, all concurrently. The transaction instance number is the TIP's mechanism for routing the client application call through the gateway to the intended remote transaction program.	
It is the responsibility of the client application to save the transaction instance number of each active transaction and pass the correct one to each TIP function called for that transaction.	
The client application calls the TIP initialization function as if it were any local PL/SQL function. For example:	
Note that in the preceding example the client application did not specify any remote transaction program name, network connection, or security information. The TIP has such information internally coded as defaults and the client application simply calls the appropriate TIP for the chosen remote transaction program. The client application can, however, optionally override some TIP defaults and supply security information.	
You do not need to change any client applications that do not require overrides.	
When the remote host transaction was defined in the PG DD, the DEFINE TRANSACTION	
statement specified certain default OLTP and network identification attributes which can be overridden:	
Refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway Administration Utility" for more information about the DEFINE TRANSACTION	
statement.	
These PG DD-defined transaction attributes are generated into TIPs as defaults and can be overridden at TIP initialization time. This facilitates the use of one TIP, which can be used with a test transaction or system, and can later be used with a production transaction or system, without having to regenerate the TIP.	
The override_Typ	
record datatype describes the various transaction attributes that can be overridden by the client application. The following overrides are currently supported:	
tranname	
can be set to override the value that was specified by the TPNAME	
parameter of the DEFINE TRANSACTION	
statement netaddr	
can be set to override the value that was specified by the SIDEPROFILE	
parameter of the DEFINE TRANSACTION	
statement In addition to the transaction attributes defined in the PG DD, there are two security-related parameters, conversation security user ID and conversation security password, that can be overridden at TIP initialization time. The values for these parameters normally come from either the database link used to access the gateway or the Oracle database session. There are cases when the Oracle database user ID is not sufficient for accessing the OLTP system. The user ID and password overrides provide a way to specify those parameters to the OLTP system.	
The following overrides are currently supported:	
oltpuser	
can be set to override the user ID used to initialize the conversation with the OLTP oltppass	
can be set to override the password used to initialize the conversation with the OLTP The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM	
is specified in the gateway initialization file, and the OLTP system is configured to accept a user ID and password on incoming conversation requests.	
The transync	
(IMS Connect SYNCLEVEL	
) and trannls	
(Globalization Support character set) are defined in the override record datatype, but are reserved for future use. The RHT SYNCLEVEL	
and Globalization Support name cannot be overridden.	
The client application might override the default attributes at TIP initialization for the following reasons:	
Client applications requiring overrides can use any combination of override and initialization parameters and might alter the combination at any time without regenerating the TIP or affecting applications that do not override parameters.	
To override the TIP defaults, an additional client application record variable must be declared as override_Typ	
datatype, values must be assigned to the override subfields, and the override record variable must be passed on the TIP initialization call from the client application. For example:	
Within the TIP, override attributes are checked for syntax problems and passed to the gateway server.	
The security requirements of the default and overridden OLTPs must be the same because the same gateway server is used in either conversation, as dictated by the database link names in the PGA RPC calls. The gateway server startup security mode is set at gateway server initialization time and passed unchanged to the OLTP at TIP or conversation initialization time.	
The client application should pass the transaction instance number, returned from a previous tip_init	
call, to identify which remote transaction program is affected and to identify any client application data parameters to be exchanged with the remote transaction program.	
In this IMS Connect inquiry example, we pass an employee number and receive an employee record back:	
The client application calls the TIP termination function as if it were any local PL/SQL function. For example:	
After a transaction instance number has been passed on a TIP terminate call to terminate the transaction, or after the remote transaction program has abended, that particular transaction instance number might be forgotten.	
The client application should include an exception handler that can clean up any active TCP/IP conversations before the client application terminates. The sample client application provided in pgtflipd.sql	
contains an example of exception handling.	
Gateway exceptions are reported in the range PGA-20900	
to PGA-20999	
and PGA-22000	
to PGA 22099	
. When an exception occurs, the TIP termination function should be called for any active conversations that have been started by prior calls to the TIP initialization function.	
For example:	
The remote transaction should also include provisions for error handling and debugging, such as writing debugging information to the IMS temporary storage queue area. Refer to the Oracle Database PL/SQL Language Reference for a discussion of how to intercept and handle Oracle exceptions.	
The TIP is a standard PL/SQL package and execute authority must be granted to users who call the TIP from their client application. In this example, we grant execute on the pgtflip	
package to user SCOTT	
:	
Refer to the Oracle Database Administrator's Guide for further information.	
PGAU need not be modified in order to have a conversation on a gateway using TCP/IP. You use the APPC format of PGAU, but you will map parameters to TCP/IP using the pg4tcpmap	
tool.	
To map the DEFINE TRANSACTION	
parameters using TCP/IP, you must have a valid input within the PGA_TCP_IMSC	
table before executing the application. Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" for information about setting up and using the mapping tool.	
Before executing the client application, ensure that a connection to the host is established and that the receiving partner is available. In this example we use PL/SQL driver PGTFLIPD	
to execute the IMS/IMS Connect inquiry. To execute this client application, enter from SQL*Plus:	
COBOL presently only supports double byte character sets (DBCS) for PIC G datatypes.	
PGAU processes IBM VS COBOLII PIC G	
datatypes as PL/SQL VARCHAR2	
variables and generates TIPs which automatically convert the data according to the Oracle NLS_LANGUAGE	
s specified for the remote host data and the local Oracle data.	
These Oracle NLS_LANGUAGE	
s can be specified as defaults for all PIC G	
data exchanged by the TIP with the remote transaction (see DEFINE TRANSACTION ... REMOTE_MBCS	
or LOCAL_MBCS	
). The Oracle NLS_LANGUAGE	
s for any individual PIC G	
data item can be further overridden (see REDEFINE DATA ... REMOTE	
or LOCAL_LANGUAGE	
).	
DBCS data can be encoded in any combination of supported DBCS character sets. For example, a remote host application which allows different codepages for each field of data in a record is supported by the Oracle Database Gateway MBCS support.	
Use of REDEFINE DATA ... REMOTE_LANGUAGE	
or LOCAL_LANGUAGE	
on PIC X	
items is also supported. Thus a TIP can perform DBCS or MBCS conversions for specified PIC X	
data fields, in addition to SBCS conversions by default for the remaining PIC X	
data fields. Default SBCS conversion is according to the DEFINE TRANSACTION... NLS_LANGUAGE	
and local Oracle default LANGUAGE	
environment values.	
When PGAU is generating a TIP, the PIC G	
datatypes are converted to PL/SQL VARCHAR2	
datatypes. After conversion by the TIP, received 'PIC G' VARCHAR2s	
can have a length less then the maximum due to deletion of shift-out and shift-in meta characters, and sent 'PIC G'	
RAW datatypes will have the shift-out and shift-in characters inserted as required by the remote host character set specified.	
This is different from the conversions performed for PIC X	
data which is always a known fixed-length and hence CHAR	
datatypes are used in TIPs for PIC X	
data fields. However, even when the PIC X	
field contains DBCS or MBCS data, a CHAR	
variable is still used and padded with blanks if needed.	
Some remote host applications bracket a PIC G	
field with PIC X	
bytes used for shift-out, shift-in meta-character insertion. Such a COBOL definition might look like:	
This is not processed correctly by PGAU, because all three fields are defined, and consequently treated, as separate data items when conversion is performed.	
To be properly processed, the definition input to PGAU should be:	
The PGAU REDEFINE DATA	
statement can redefine the 3-field definition to the 1-field definition by specifying USAGE(SKIP)	
on fields SO	
and SI	
, and '05 MY_MBCS_DATA PIC G(51).'	
to redefine MY_MBCS_DATA	
. The three REDEFINE	
statements can be placed in the PGAU input control file, and thus the remote host definition need not be altered.	
Execute privileges must be explicitly granted to callers of TIPs or procedures. This privilege cannot be granted through a role.	
Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace and ptrace procedures. Refer to the "Configuring PGAU" chapter appropriate for your communications protocol in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64, Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows ,and the Oracle Database Advanced Application Developer's Guide for more information.	
For example:	
On Microsoft Windows:	
On UNIX based systems:	
After a TIP has been developed, the TIP user must be granted execute privileges on the TIP by the TIP owner. The TIP owner is usually PGAADMIN	
, but can be another user who has been granted either the PGDDDEF	
or PGDDGEN	
roles. For example:	
For Microsoft Windows:	
For UNIX based systems:	
where database_specification_string	
is the Oracle Net identifier for the Oracle database where the gateway UTL_RAW	
and UTL_PG	
components were installed. This is the same Oracle database where the TIPs are executed and where grants on the TIPs are performed from the TIP owner user ID.	
A SQL script for performing these grants is provided in the %ORACLE_HOME%\\dg4appc\\admin	
directory for Microsoft Windows and $ORACLE_HOME/dg4appc/admin	
in the directory for UNIX based systems. The pgddausr.sql	
script performs the grants for private access to the packages by a single TIP user. If private grants are to be used, the pgddausr.sql	
script must be run once for each TIP user's user ID.	
To run these scripts, use SQL*Plus to connect to the Oracle database as user PGAADMIN	
. From SQL*Plus, run the pgddausr.sql	
script from the %ORACLE_HOME%\\dg4appc\\admin	
directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin	
directory on UNIX based systems. The script performs the necessary grants as previously described. You are prompted for the required user IDs, passwords, and database specification strings. If you are using private grants, repeat this step for each user ID requiring access to the packages.	
No script has been provided to perform public grants. To do this, issue the following commands:	
For Microsoft Windows:	
For UNIX based systems:	
This chapter discusses diagnostic techniques and aids for determining and resolving problems with data conversion, truncation, and conversation startup. It also describes how to collect the data when the debugging (trace) option is on.	
You will want to trace the PL/SQL stored procedures only when you suspect problems. Do not run with tracing enabled during normal operations, because it will affect performance.	
This chapter contains the following sections:	
TIP definition errors occur when a TRANSACTION	
, CALL	
, or DATA	
entry in the PG DD is not properly defined.	
Use the REPORT	
with DEBUG	
statement to list the PG DD contents and GENERATE DIAGNOSE(PKGEX(DR))	
option to include corresponding ID numbers in the TIP.	
Table 8-1 shows the mnemonic used to represent ID numbers and their correspondence with the following:	
REPORT	
with debug listings, GENERATE	
traces and TIPs Table 8-1 PG DD ID Numbers in Correspondence	
PGAU REPORT/TIP	PDGG table(col)
---	---
These ID numbers can be used to associate the conversions performed in the TIP with the definitions stored in the PG DD.	
The PG DD diagnostic references appear in TIPs generated with the PKGEX(DR)	
option as single line Comments:	
The PG DD diagnostic references appear in REPORT	
with DEBUG	
listings before or to the right of their related definition entry as end-delimited Comments:	
Refer to Appendix A, "Database Gateway for APPC Data Dictionary" for more information about PG DD, including a complete list of dictionary tables.	
TIPs should be generated by the PGAU GENERATE	
command with the PKGEX(DR)	
diagnostic option, to include PG DD reference Comments in the TIP. These diagnostic references are Comments only and do not affect the runtime overhead of the TIP. Refer to Section 2.6.9, "GENERATE" in Chapter 2, "Procedural Gateway Administration Utility" for a description of the PKGEX (DR)	
parameter.	
t#	
), and version (v#	
) from the TIP specification within the TIP. REPORT WITH DEBUG	
specifying the same transaction name and version. REPORT	
selects definitions from the PG DD and produces a listing showing the DATA	
, CALL	
, and TRANSACTION	
definitions and the ID number of each user-supplied definition.	
IBMVSCOBOLII	
affected clauses include	
OCCURS n TIMES DEPENDING ON	
field	
IBMVSCOBOLII	
affected clauses include	
REDEFINES field1 WHEN field2 =	
criteria	
PGAU GENERATE	
error messages and TRACE(OC)	
entries reference SQL SELECT	
statements. Refer to Table 8-2 for the meaning of the name designations for each entry.	
Table 8-2 Meaning of TRACE(OC) Output	
Name	Entry
---	---
Select Environment Data	
Select Transaction (latest version)	
Select Transaction (specific version)	
Select Transaction Calls	
Select Parameter Data	
Select Fields	
Select Field Attributes	
Select conversion Formats	
Select Attribute conversions	
The SQL*Plus test scripts in Table 8-3 are provided to perform the identical SELECTS	
as GENERATE	
performs to determine which PG DD rows are being used when the TIP is generated. These files are loaded into the %ORACLE_HOME%\\dg4appc\\admin	
directory on Microsoft Windows or into the $ORACLE_HOME/dg4appc/admin	
directory on UNIX based systems, during installation.	
Table 8-3 SQL*Plus Test Scripts and Their Corresponding Entries	
Script	Entry
---	---
Select Environment Data	
Select Transaction (latest version)	
Select Transaction (specific version)	
Select Transaction Calls	
Select Parameter Data	
Select Fields	
Select Field Attributes	
Select Conversion Formats	
Select Attribute conversions	
The scripts are shown in the same order used by GENERATE	
and each script prompts the SQL*Plus user for the required input. The information retrieved from a previous select is often used as input to a subsequent select. If a you suspect that a PG DD field entry has produced inaccurate data, browse the .sql	
files listed above to determine the source of the problem. These files are loaded into the %ORACLE_HOME%\\dg4appc\\admin	
directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin	
directory on UNIX based systems, during installation.	
Data conversion errors are usually the result of:	
or	
PGAU determination of the datatype is based on the values found in the PG DD, pga_fields	
(mask)	
, and pga_fields	
(maskopts)	
columns. PGAU generates PL/SQL code to perform conversions based on the mask value:	
PIC X	
converted to CHAR	
with the same character length PIC G	
converted to CHAR	
with the same character length PIC 9	
converted to NUMBER	
Character datatype is presumed for all PIC X	
and PIC G	
mask values and conversion errors are more likely the result of position, length, and justification errors.	
Determination of numeric datatype depends on several factors, including the combination of mask and maskopts values and how they apply to the actual remote host data in its internal format. Values for mask, maskopts, and data might conflict in unexpected ways. For example, an option such as USAGE IS COMP	
might be overridden if the data is in display format. While compilers occasionally perform such overrides correctly, they can cause unexpected results when exchanging data with systems coded in other languages.	
To notify the user of such overrides, a warning function has been included in the following UTL_PG	
functions:	
MAKE _NUMBER_TO_RAW_FORMAT	
MAKE_RAW_TO_NUMBER_FORMAT	
NUMBER_TO_RAW	
RAW_TO_NUMBER	
TIPs should be generated by the PGAU GENERATE	
command with the PKGEX(DC)	
diagnostic option to include TIP data conversion trace logic in the TIP. TIP function call trace logic is always included in every TIP. This is runtime trace instrumentation and has some overhead when tracing is enabled, but negligible overhead when tracing is disabled. Refer to Section 2.6.9, "GENERATE" in Chapter 2, "Procedural Gateway Administration Utility" for more information.	
PKGEX(DC, DR)	
options and recompile the TIP body file, tipname	
.pkb	
. Avoid recompiling the TIP specification. tipname	
_init	
) to pass the trace flags parameter with data conversion and function call tracing enabled. Refer to "Controlling TIP Runtime Data Conversion Tracing". If the problem causes an exception to be raised in the TIP and the application contains an exception handler, the application exception handler should be Commented out to prevent it from handling the exception and preventing the exception point of origin from being reported. When the TIP exception is next raised, its source line number in the TIP is reported. Record this information.	
Execute the application with diagnostic TIP initialization.	
If the TIP trace pipe inlet overflows due to the application calls causing the TIP to write trace messages in the TIP trace pipe inlet, you have one minute from the start of the overflow condition to begin Step 4 and empty the TIP trace pipe.	
Otherwise, exception "ORA-20703 PGA-TIP: pipe send error	
" is issued, ending the diagnostic session, possibly before any relevant trace information is generated.	
Retrieve and record the TIP trace message stream.	
Use SQL*Plus to connect to the same Oracle user ID executing the application or the user ID under which the TIP is executed. This establishes a second session from which the trace pipe outlet can be read, preventing the TIP trace pipe from overflowing at the TIP trace pipe inlet.	
If the application is long-running, repeat this command as often as needed until all trace messages have been retrieved.	
If any exceptions are raised, note their prefix, number, and full message text.	
Analyze the TIP trace message stream. A normal trace is shown for the pgadb2i	
TIP in Appendix F, "Administration Utility Samples".	
Runtime trace control is the second parameter specified on a TIP initialization call. It is a CHAR(8)	
datatype of the following form:	
Table 8-4 describes the value of positions one to four:	
Table 8-4 Values of Positions 1 through 4 on Second Parameter of TIP Call	
Item	Description
---	---
position 1 (controls
position 2 (controls the function entry/exit tracing. A value of 0 suppresses the function entry/exit tracing; a value of 1 enables the function entry/exit tracing.
position 3 (controls data conversion tracing. A value of 0 suppresses data conversion tracing; a value of 1 enables data conversion tracing.
position 4 (controls gateway exchange tracing. A value of 0 suppresses gateway exchange tracing; a value of 1 enables gateway exchange tracing.
Positions 5 through 8 are reserved and ignored.	
Use PGAU to regenerate the TIP and specify the GENERATE	
parameter DIAGNOSE(PKGEX(DC))	
. This includes runtime PL/SQL code in the TIP which tests for and displays warnings of correct, but possibly unexpected NUMBER_TO_RAW	
and RAW_TO_NUMBER	
conversions.	
Refer to Section 2.6.9, "GENERATE" in Chapter 2, "Procedural Gateway Administration Utility" for more information about this parameter.	
Recompile the TIP body under SQL*Plus. Avoid recompiling the TIP specification.	
After the TIP has been regenerated, the issuance of runtime warnings is under control of the application. By default, warnings are suppressed and are only issued when they are enabled.	
Errors and exceptions are always issued if they occur.	
To enable the issuance of warnings, an additional parameter must be supplied when calling the TIP initialization function. This parameter is a CHAR(8)	
datatype and each character position controls a particular TIP runtime diagnostic function.	
To enable warnings in yourtip	
, the client application should call the TIP initialization function with the statement:	
The following is input to the TIP trace pipe inlet at initialization time:	
To enable function entry/exit tracing in yourtip	
, the client application should call the TIP initialization function with the statement:	
The following is input to the TIP trace pipe inlet at initialization time:	
To enable data conversion tracing in yourtip	
, the client application should call the TIP initialization function with the following statement:	
The following is input to the TIP trace pipe inlet at initialization time:	
To enable runtime gateway exchange tracing in yourtip	
, the client application should call the TIP initialization function with the following statement:	
The following is input to the TIP trace pipe inlet at initialization time:	
After debugging is finished, there are two ways to suppress the following:	
You can:	
)	
;A third method, described in Method C, removes the logic for:	
Or you can recompile the previous version of the TIP body if it was saved.	
Methods A and B allow you to use the same TIP without alteration, but without tracing or warnings. These methods are reversible without alteration or replacement of the TIP. Tracing and warnings can be redisplayed should a problem recur.	
Method C also suppresses data conversion tracing and warnings and incurs reduced overhead by avoiding tests, but is not reversible without regenerating the TIP or recompiling an alternate version with data conversion tracing and warning diagnostics imbedded.	
The logic for function entry/exit and gateway exchange tracing is included in every TIP and cannot be removed. It can be disabled by method A or B.	
Oracle Database Gateway for APPC data lengths are limited by PL/SQL to 32,763 bytes per APPC exchange and PL/SQL variable.	
The following steps can be used to diagnose data conversion or truncation errors.	
Refer to Chapter 3, "Creating a TIP" to review the proper values and definitions referenced in items 0 through 4 below:	
If your gateway uses TCP/IP: Ensure the RHT I/O PCB call addresses the correct transmission buffer and uses the correct data length	
Ensure the client application has declared the correct TIP datatypes used as arguments in the TIP calls.	
DBMS_OUTPUT	
calls can be inserted in the client application to trace its behavior.	
For more information about calling TIP functions in proper sequence, refer to the chapter on configuring the Oracle database for first time installations, in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.	
Refer to "Problem Analysis with TIP Runtime Traces" for more information about traces; refer also to GENERATE in Chapter 2, "Procedural Gateway Administration Utility".	
Note that the output of the trace is different for a gateway using SNA than for a gateway using TCP/IP. However, the method of invoking the trace is the same regardless of which communication protocol you are using.	
On Microsoft Windows, the gateway server tracing must also be enabled in %ORACLE_HOME%\\dg4appc\\admin\initsid.ora	
. Set the parameters SET TRACE_LEVEL=255	
and SET LOG_DESTINATION=C:\oracle\pga\11.2\dg4appc\log	
On UNIX based systems, the gateway server tracing must also be enabled in $ORACLE_HOME/dg4appc/admin/initsid.ora	
. Set the parameters SET TRACE_LEVEL=255	
and SET LOG_DESTINATION=/oracle/pga/11.2/dg4appc/log	
Refer to "Gateway Server Tracing" in this guide for more information about tracing.	
Rerun the client application and examine the trace (see the next step for details).	
To disable the trace, reset	
SET TRACE_LEVEL=0	
The TIP trace output can be saved in a spool file, such as:	
TIP trace output is written to a named DBMS_PIPE	
and can be retrieved under SQL*Plus by issuing the following command:	
or it can be purged by issuing the following command:	
Note: tipname is case-sensitive and must be specified exactly as it is in the TIP.	
Gateway server trace output is written to a log file in a default directory path specified by the SET LOG_DESTINATION	
gateway parameter in %ORACLE_HOME%\\dg4appc\\admin\initsid.ora	
for Microsoft Windows and in $ORACLE_HOME/dg4appc/admin/initsid.ora	
for UNIX based systems. For example, on Microsoft Windows:	
On UNIX based systems:	
Refer to "Gateway Server Tracing" for more information.	
The gateway server log file can be viewed be editing the file or by issuing other system commands that display file contents. The log file can also be copied and saved to document problem symptoms.	
The gateway contains extensive tracing logic in the gateway remote procedural calls (RPCs), and the APPC-specific code. Tracing is enabled through gateway initialization parameters or dynamic RPC calls to the gateway. The trace provides information about the execution of the gateway RPC functions and about the execution of the APPC interface. The trace file contains a text stream written in chronological sequence of events. The trace is designed to assist application programmers with the debugging of their OLTP transaction programs and Oracle applications that communicate with those transaction programs through the gateway.	
A single trace file is created for an entire gateway session from the time the database link is opened until it is closed. The trace can be directed to a specific path/filename or to a path (directory) only. In the first case, the file is overwritten each time a new session begins for the gateway being traced. When the trace target is a directory, a separate file with a generated name (containing the operating system process ID) is written for each gateway session. The latter approach must be used whenever the gateway to be traced might be the target of new sessions after the desired trace is written but before it can be copied and saved. Conversely, in some situations you might choose to create a distinct gateway system identifier used solely for tracing, and direct its trace to a single specific filename. This avoids the problem of an ever-increasing set of trace files when, for example, repeated attempts are necessary to reproduce or debug a problem. A fixed filename should never be used if there is any chance that an unexpected gateway session could overlay a useful trace.	
This section describes how to define the destination of trace files to the gateway, and how to cause the gateway to create the trace files during initialization. Note that this does not enable any gateway tracing, it merely defines the destination of any trace output produced when the gateway tracing is enabled.	
initsid.ora	
(a copy of the old), entries in listener.ora	
as necessary, and a new Oracle database link. Test the new system identifier to ensure it works before proceeding.	
%ORACLE_HOME%\\dg4appc\\admin	
, edit the initsid.ora	
file so it contains the following: For UNIX based systems, in $ORACLE_HOME/dg4appc/admin	
, edit the initsid.ora	
file so it contains the following:	
where logdest	
is the directory path for the trace output. The logfile is usually in %ORACLE_HOME%\dg4appc\log	
for Microsoft Windows and $ORACLE_HOME/dg4appc/log	
for UNIX based systems. Refer to the earlier discussion about "Problem Analysis of Data Conversion and Truncation Errors" for more information.	
Note: Misspelled parameter names in initsid.ora are not detected. The parameter is ignored.	
Once these two steps are completed, the gateway opens the specified trace file during initialization. Each session on this system identifier writes a trace file as specified by the SET	
LOG_DESTINATION	
parameter described in Step 2 above.	
If a directory path was specified, each trace file has a name of the form:	
where sid	
is the gateway sid and pid	
is the operating system process ID of the gateway server expressed in decimal.	
There are two ways to enable the gateway server tracing. The first is to set the tracing options in the gateway initialization file, initsid.ora	
. The second is to use the additional PGA remote procedural call (RPC) function, PGATCTL	
, to dynamically control the tracing from within the Oracle application. The first method causes tracing to be performed for all users of the gateway system identifier and is recommended only when the use of the gateway system identifier can be limited to users actually needing the trace. The second method is more flexible and allows the application programmer to selectively trace events on a single gateway session without affecting the operation of other users' gateway sessions.	
Before the gateway server trace is enabled, perform the tasks listed in "Defining the Gateway Trace Destination".	
Edit the initsid.ora	
file, and add the following line at the end of the file (or, if a SET TRACE_LEVEL	
parameter is already specified, modify it):	
where trace	
is a numeric value from 1 to 255 indicating which traces are to be enabled. For further information on the use of this parameter, refer to "PGA Parameters" in Appendix A, "Gateway Initialization Parameters for SNA Protocol" of the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows	
Once this step is completed, tracing is enabled for the desired gateway system identifier.	
The following is only needed for user-written TIPs. PGAU-generated TIPs automatically include the following facilities. Refer to "Controlling TIP Runtime Gateway Exchange Tracing" for more information.	
Make the following changes to the PL/SQL application that calls the Transaction Interface Package(s) to execute remote transaction(s).	
PGATCTL	
before any calls to TIP initialization functions are made: Where Table 8-5 describes the parameters in PGATCTL	
:	
Table 8-5 PGATCTL Parameters	
This call sets the trace flags for all new conversations started after the call to the value specified by traceS	
.	
This appendix contains the following sections:	
The Procedural Gateway Data Dictionary (PG DD) is maintained in a conventional Oracle database. It is installed by a SQL*Plus installation script (pgddcr8.sql	
in the %ORACLE_HOME%\\dg4appc\\admin	
directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin	
directory on UNIX based systems) and manipulated by PGAU statements and standard SQL statements.	
The dictionary is divided into two sections:	
The environment dictionary is static and should not be changed. The contents of the environment dictionary support proper translation from the remote transaction's environment to the integrating server's environment, and is platform-specific. The active dictionary is updated at the user's location by the PGAU in response to definitions supplied by the user.	
The PGAU uses some dictionary tables strictly as input. These dictionary tables define environmental parameters for PGAU. Both table and values are installed by a SQL*Plus script at gateway installation time and are not to be modified by the installation.	
The environment dictionary does not reference the active dictionary, but the active dictionary does reference environment dictionary entries.	
The environment dictionary requires unique identifying numbers in some columns to join environment dictionary entries together. Oracle sequence objects are therefore created by the Oracle Database Gateway for APPC to support this requirement.	
Table A-1 presents the Oracle sequence objects and their descriptions.	
The environment dictionary tables contain constants that describe the following components of the operating environment:	
pga_maint	
pga_environments	
pga_env_attr	
pga_env_values	
pga_compilers	
pga_datatypes	
pga_datatype_attr	
pga_datatype_values	
pga_usage	
pga_modes	
The pga_maint	
table stores the PG DD maintenance information, including version number and change history, as presented in Table A-2:	
Table A-2 pga_maint	
Column	Type
---	---
PG DD version in format	
Oracle date and time at which the PG DD was upgraded.	
Description of the PG DD upgrade.	
The pga_environments	
table stores the defined environment keywords, as presented in Table A-3:	
The pga_env_attr	
table stores the types of environmental attributes, as presented in Table A-4:	
The pga_env_values	
table stores the values for environments, as presented in Table A-5:	
The pga_compilers	
table stores the compiler environment names, as presented in Table A-6:	
Table A-6 pga_compilers	
Column	Type
---	---
Compiler name. Primary key.	
PLS compiler name. Secondary key.	
Env id. Foreign key.	
Compiler env id. Foreign key.	
PGADDL processor number.	
The pga_datatypes	
table stores the datatype keywords, as presented in Table A-7:	
The pga_datatype_attr	
table stores datatype attribute keywords, as presented in Table A-8:	
The pga_datatype_values	
table stores the datatype attribute values, as presented in Table A-9:	
Table A-9 pga_datatype_values	
Column	Type
---	---
Compiler env id. Primary key.	
datatype_values. Foreign key.	
Attribute id. Foreign key.	
Datatype attr group no.	
Numeric attribute value.	
Character attribute value.	
Date attribute value.	
The pga_usage	
table performs a referential integrity check of pga_data	
and pga_field	
column "usage" as presented in Table A-10:	
The pga_modes	
table performs a referential integrity check of pga_call_parm	
column "mode", as presented in Table A-11:	
The PG DD active data dictionary is created by pgddcr8.sql	
at installation, but maintained using PGAU. The active dictionary can refer to items (by ID number) in the environment dictionary.	
The PG DD active dictionary tables contain the descriptions of transactions and data structures. There might be more than one version of a definition. Old versions are retained indefinitely.	
In PGAU dictionary operations, a definition is referred to by its "name", which can be qualified by a specific version number. If omitted, the most recent version is assumed.	
Because the active dictionary is constantly changing, the identifying numbers needed to join active dictionary entries together must also change. To support this requirement, PG DD installation creates the following Oracle sequence objects.	
Table A-12 lists the Oracle sequence objects and their descriptions:	
Table A-12 Active Dictionary Oracle Sequence Object Descriptions	
Oracle Sequence Objects	Description
---	---
Transaction id tag	
Transaction Version id tag	
Transaction Attribute id tag	
APPC-Call id tag	
Call Version id tag	
APPC-Call Parameter id tag	
Data id tag	
Data subfield id tag	
Data Version id tag	
Data Attribute id tag	
Following is a list of active dictionary tables:	
pga_trans	
pga_trans_attr	
pga_trans_values	
pga_trans_calls	
pga_call	
pga_data	
pga_fields	
pga_data_attr	
pga_data_values	
One row exists in the PGA_TRANS	
table for each user transaction. The row is created by a PGAU DEFINE TRANSACTION	
statement and used by a PGAU GENERATE	
statement to create the PL/SQL package (TIP).	
Table A-13 presents the column, type and content information for PGA_TRANS	
:	
Table A-13 pga_trans	
Column	Type
---	---
Transaction name as defined by the customer. Primary key. Max length => APPC TPname string length.	
Version identification of this entry; it exists in the table because multiple archived or invalid entries might exist and be kept for possible future reactivation. Primary key. Set from an Oracle sequence object for transaction version inserted into the PG DD.	
Audit-trail date/time record last updated.	
Audit-trail user ID/program which last updated this record.	
PGA Transaction number, used for the define call, define data and define transaction statements. Foreign key.	
Set from an Oracle sequence object for transaction inserted into the PG DD.	
The pga_trans_attr	
table relates a character string defining the transaction attributes supported by PGA to pga_trans_values	
entries through an attribute id number and type.	
The pga_trans_attr	
table is also used for integrity checks of transaction attributes when new transactions are being defined.	
There is an entry in the pga_trans_attr	
table for each transaction attribute name. All possible transaction attribute names supported by PGA on any defined transaction are specified. There is one row for each attribute, and no duplicates are allowed.	
Table A-14 presents the column, type and content information for pga_trans_attr	
:	
Table A-14 pga_trans_attr	
Column	Type
---	---
Character string name of attribute. Primary key. Contains: " " " " " " " " "	
Attribute id assigned. Foreign key. pga_data_values(attr#). Set from an Oracle sequence object for each supported transaction attribute inserted into the PG DD.	
Type of Oracle column from which attribute value is retrieved from pga_tran_values. For example: ' ' '	
If not null, required keyword for	
The pga_trans_values	
table describes the values of transaction attributes.	
A row exists to specify the value of each attribute of each transaction defined in the data dictionary.	
The column, type and content information for pga_trans_values	
is presented in Table A-15:	
Table A-15 pga_trans_values	
Column	Type
---	---
Transaction id from Primary key. Set from an Oracle sequence object for transaction inserted into the PG DD.	
Attribute id from Primary key. Set from an Oracle sequence object for each supported transaction attribute inserted into the PG DD.	
Attribute's numeric value, for example for a given transaction's	
Attribute's character value; for example, a given transaction's	
Attribute's date value. Probably always null; included for completeness.	
The pga_trans_calls	
table relates all calls available with any single transaction to each specific call definition through a call ID number.	
An entry exists in the pga_trans_calls	
table for each PL/SQL call referenced in a transaction definition through the CALL	
(cname,...) operand. One row per transaction call; no duplicates.	
The column, type and content information for pga_trans_calls	
is presented in Table A-16:	
Table A-16 pga_trans_calls	
Column	Type
---	---
Transaction id number from Primary key. Set from an Oracle sequence object for transaction inserted into the PG DD.	
Sequence number of this call. Primary key.	
Call id number in Foreign key. Copied from	
The pga_call table relates all calls that are available for all defined transactions, to a unique call id number and PL/SQL remote procedural call (RPC) name. One entry exists in this table for each PL/SQL call (defined in a DEFINE CALL	
statement).	
One row per call, duplicates are possible when multiple transactions make identical calls. The plsrpc specification must be unique within the Oracle database which makes the calls, and rows are uniquely distinguished by call#.	
The column, type and content information for pga_call are presented in Table A-17:	
Table A-17 pga_call	
Column	Type
---	---
Call name for PGAU reference; Primary key. Max length => COBOL name string length	
RPC call name for reference in PL/SQL (public procedure to be generated). Max length => PL/SQL RPC name length	
Audit trail date/time of record's last update.	
Audit trail user id/program which last updated this record.	
Version identification of this entry, because multiple archived or invalid entries might exist and be kept for possible future reactivation. Primary key. Set from an Oracle sequence object for call version inserted into PG DD.	
Call id number. Foreign key.	
Set from an Oracle sequence object for each call inserted into the PG DD.	
The pga_call_parm	
table relates all parameters of any single transaction call to the data definitions describing each parameter.	
One entry exists in the pga_call_parm	
table for each parameter on a call in the PARMS()	
operand of the PGAU DEFINE CALL	
statement. One row per parameter, duplicates allowed when multiple calls (in the pga_call	
table) refer to the same parameters.	
Table A-18 presents the column, type and content information for pga_call_parm	
:	
Table A-18 pga_call_parm	
Column	Type
---	---
Call number for the referencing call from Primary key. Set from an Oracle sequence object for each call inserted into the PG DD.	
Position in the Primary key.	
Call mode of this parameter; one of the values in ' Max length => '	
Data definition # in Foreign key.	
Copied from	
The pga_data	
table defines each data item used as a parameter in a call and relates the remote host data name to its PL/SQL variables and any component subfields or clauses within each data item (if the data item is an aggregate, such as a record). Each data item might have attributes related to it through its corresponding field definition. Even atomic data items have a single row in the pga_field	
table.	
One row exists in the pga_data	
table for each data item defined by a PGAU DEFINE DATA	
or REDEFINE DATA	
statement.	
Table A-19 presents the column, type and content information for pga_data	
:	
Table A-19 pga_data	
Column	Type
---	---
Compiler id number.; Foreign key. (Set from	
Compiler options from the	
Name from the DEFINE statement; Primary key. Max length => COBOL name length	
PL/SQL variable name of data item for reference in PL/SQL. Max length => PL/SQL variable length	
Version number of this entry. Set from an Oracle sequence object for data version inserted into the PGADD.	
Audit-trail date/time this control record last updated.	
Audit-trail user id/program which last updated this record.	
Default usage of this data item: Used primarily by PGAU Max length => 4-char string length	
Data definition number. Foreign key. (Set from an Oracle sequence object.	
The pga_fields table defines each field within a data item and relates the remote host data field to its PL/SQL variables or nested records. Each field item might have attributes related to it (by field#) in the pga_data_attr	
and pga_data_values	
tables.	
One row exists in the pga_fields table for each atomic item, field, clause, or nested record defined by a PGAU DEFINE DATA	
statement. Several rows would exist (related by a single data# and incrementing fld#) to define an aggregate data item, one row per field or group.	
Table A-20 presents the column, type and content information for pga_fields:	
Table A-20 pga_fields	
Column	Type
---	---
Data definition number. Primary key. (Set from an Oracle sequence object.	
Extracted or derived name of a field if dname defines aggregate data. Max length => COBOL name length	
PL/SQL variable name of subfield in aggregate data for reference in PL/SQL. Max length => PL/SQL variable length	
Audit-trail date/time this control record last updated.	
Audit-trail user id/program which last updated this record.	
Clause or field within data definition id no. Foreign key.	
Set from an Oracle sequence object.	
Relative position number of each field defined within an aggregate data item (for example, 1, 2 3, and so on) or	
Usage of this data field: ' Max length => 4-char string length	
Datatype or Mask value. For example: ' ' ' '	
When Max length => arbitrarily chosen	
Datatype or Mask options value. For example: ' '	
Max length => arbitrarily chosen	
The pga_data_attr	
table defines all possible data attribute names allowed by PGA and relates each attribute name to a number and type, by which the value of this attribute for a specific data item can be selected from pga_data_values	
.	
The pga_data_attr	
table is also used for integrity checks of data attributes when new data items are defined.	
There is one entry in the pga_data_attr	
table for every possible attribute name to which any PGA supported data item might relate.	
Table A-21 presents the column, type and content information for pga_data_attr	
:	
Table A-21 pga_data_attr	
Column	Type
---	---
Character string name of attribute. Primary key. Contains: "LEVEL" "RENAMEMF" (renames member first) "RENAMEML" (renames member last) "REMAPSMF" (redefines member first) "REMAPSML" (redefines member last) "REMAPSWM" (redefines when member) "REMAPSWC" (redefines when char value) "REMAPSWN" (redefines when num value) "REPGRPFF" (occurs n) "REPGRPVF" (odo first n) "REPGRPVL" (odo last n) "REPGRPVM" (odo depending member) "REPGRPKA" (either Key Asc name) "REPGRPKD" (either Key Desc name) "REPGRPIX" (either index name) "PLSTYPE" "JUST" (justified char data) "SYNC" (aligned aggregate data) "LOCAL_LANGUAGE" "REMOTE_LANGUAGE" "LENGTH" (LENGTH IS variable) Max length => attr name string lengths	
Attribute id assigned. Foreign key. pga_data_values(attr#). Set from an Oracle sequence object for each supported data attribute inserted into the PG DD.	
Type of Oracle column from which attribute value is retrieved from pga_data_values. For example: ' ' '	
If not null, required keyword.	
A row exists in the pga_data_values	
table for each attribute of each data item defined by each data definition.	
Table A-22 presents the column, type and content information for pga_data_values	
:	
Table A-22 pga_data_values	
Column	Type
---	---
Data Field Definition number from pga_data(fld#). Primary key.	
Attribute id from Primary key.	
Attribute's numeric value. For example: number for "LEVEL" number for "REMAPSWN" (redefines) number for "REPGRPFF" (occurs n) number for "REPGRPVF" (odo first n) number for "REPGRPVL" (odo last n) If a non-numeric attribute, this item is	
Attribute's character value. fname for "RENAMEMF (renames first) fname for "RENAMEML" (renames last) fname for "REMAPSMF" (redefines first) fname for "REMAPSML" (redefines last) fname for "REMAPSWM" (redefines when) fname for "REPGRPVM" (odo member) string for "REMAPSWC" (redefines) string for "REPGRPKA" (occurs key) string for "REPGRPKD" (occurs key) string for "REPGRPIX" (occurs index) string for "PLSTYPE" (PL/SQL data type) string for "JUST" string for "SYNC" string for "REMOTE_LANGUAGE" fname for "LENGTH" If a non-character attribute, this item is Max length => NLS_charset string length	
Attribute's date value. Always null, included for completeness.	
Qualified name number. Foreign key.	
To execute a remote transaction program using the Oracle Database Gateway for APPC you must execute a PL/SQL program to call the gateway functions, using a remote procedural call (RPC). The gateway functions handle the initiation, data exchange and termination for the gateway conversation with the remote transaction program.	
The Oracle Database Gateway for APPC includes a tool, PGAU, to generate the PL/SQL packages (TIPs) automatically, based on definitions you provide in the form of COBOL record layouts and PGDL (Procedural Gateway Definition Language).	
This appendix contains the following section:	
The gateway functions are all executed through remote procedural calls (RPC). The functions are called from PL/SQL code as follows:	
Where Table B-1 describes the parameters in this syntax:	
Table B-1 Gateway Functions	
Item	Description
---	---
is the name of the function being called.	
is the name of a predefined database link to the gateway server on the Windows system.	
are the function-specific parameters described later in this appendix.	
Calling a function in PL/SQL code with the @dblink	
notation following the function name is a remote procedural call.	
PGAINIT	
and PGAINIT_SEC	
are remote procedural calls that initiate an APPC conversation with a specified transaction program. The difference between the two is that PGAINIT_SEC	
includes the added capability of being able to set the gateway conversation security user ID and password to values other than the current Oracle user ID and password. Upon successful completion of either function, the conversation is ready to send data to the remote transaction program.	
Table B-2 presents the PGAINIT	
and PGAINIT_SEC	
parameters that are common in both procedures. It lists the type, datatype and description of each parameter:	
Table B-2 Common PGAINIT and PGAINIT_SEC Parameters	
Parameters	Type
---	---
For a gateway using SNA: Conversation identifier returned by the For a gateway using TCP/IP: Socket file descriptor returned by the	
Transaction program name of the remote transaction program with which a conversation is to be established. For most OLTPs, the name must be the transaction name as defined to the OLTP. This name can be from Note: For TCP/IP support, the maximum size is 8 characters. For more information, refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.	
For a gateway using SNA: the LU name of the OLTP under which the remote transaction program executes. This parameter is the fully-qualified LU name or alias and can be from 1 to 17 characters in length. For a gateway using TCP/IP: this parameter is not applicable.	
For a gateway using SNA: Logmode entry name of the logmode table entry on the remote host, which defines the session characteristics for the APPC conversation. This name can be from 1 to 8 characters in length. For a gateway using TCP/IP: this parameter is not applicable.	
Profile name of the SNA Side Information profile which defines the conversation. This name can be from 1 to 8 characters in length. For a gateway using TCP/IP: this name represents a group of IMS transactions similar of similar TCP/IP and IMS Connect attributes.	
Table B-3 lists the PGAINIT_SEC	
parameters which are specific to the procedure:	
Table B-3 PGAINIT_SEC Parameters Specific to the Procedure	
Parameter	Type
---	---
Conversation security user ID to be passed to the target OLTP. The value must be from 1 to 8 characters in length.	
Conversation security password to be passed to the target OLTP. The value must be from 1 to 8 characters in length.	
For Gateways Using the SNA Protocol:	
There is an interrelationship between PROFNAME	
and LUNAME	
/TPNAME	
/MODENAME	
. If PROFNAME	
is set to blanks or a null value, the LUNAME	
, TPNAME	
, and MODENAME	
parameters are all required to be non-blank values. If they are not all set to non-blank values, an exception is generated. However, if PROFNAME	
is set to a valid Side Information Profile name, the LUNAME	
, TPNAME	
, and MODENAME	
parameters can be null or blank, because the Side Information profile specifies all the information necessary to establish the conversation. In this case, any non-blank, non-null values specified for LUNAME	
, TPNAME	
, or MODENAME	
override values set in the Side Information profile.PROFNAME	
must be set and cannot be blank or null.	
For Gateways Using the TCP/IP protocol:	
PROFNAME	
and TPNAME	
must be set and cannot be blank or null.	
PGAXFER	
is called to transfer data to and from a remote transaction program on the gateway conversation initialized by PGAINIT	
. The function sends and/or receives data items based on the calling parameters.	
Table B-4 lists the types, datatypes and descriptions of PGAXFER	
parameters:	
Table B-4 PGAXFER Parameters	
Parameter	Type
---	---
For a gateway using SNA: Conversation identifier returned by the For a gateway using TCP/IP: Socket file descriptor returned by the	
Buffer containing all the data items to be sent to the remote transaction program. The data items are sent as is, with no changes. Data items must appear in the buffer in the exact order in which the remote transaction program expects to receive them. The total size of all the data items cannot exceed the maximum size for a single gateway send, which is	
Total length of the data items contained in	
Buffer containing an array of up to	
Buffer to contain all the data items received from the remote transaction program. The data items are stored in this buffer in the exact order in which the remote transaction program sends them. The total size of all the data items cannot exceed the maximum size of	
Total length of the receive buffer. The range is	
Buffer containing an array of up to	
When PGAXFER	
is called, either or both of SENDBUFL	
and RECVBUFL	
must be nonzero; in other words, at least one data item must be sent to or received from the remote transaction program. If PGAXFER	
is called with no data items to send or receive, it generates an exception.	
Note: On eachPGAXFER call, all send processing occurs first, followed by all receive processing. If a transaction operates in a manner that requires multiple sets of send and receives, then PGAXFER can be called more than once to accommodate the transaction. If more than 32,763 bytes of data are to be sent or received, multiple calls to PGAXFER must be made.	
PGATERM	
is called to terminate an the gateway conversation that was initiated by a previous call to PGAINIT	
. Upon successful completion of this function, the conversation is deallocated and all storage associated with it is freed.	
Table B-5 presents the types, datatypes and descriptions of PGATERM	
parameters:	
Table B-5 PGATERM Parameters	
Parameter	Type
---	---
For a gateway using SNA: Conversation identifier returned by the For a gateway using TCP/IP: Socket file descriptor returned by the	
Type of termination to be performed.'	
PGATCTL	
is called by the TRACE_LEVEL	
parameter at %ORACLE_HOME%\\dg4appc\\admin\initsid.ora	
file for Microsoft or $ORACLE_HOME/dg4appc/admin/initsid.ora	
file on UNIX based systems. Using PGATCTL	
, the trace level can be changed dynamically from within a PL/SQL stored procedure. This facility is useful when debugging a new PL/SQL application.	
Table B-6 presents the types, datatypes and descriptions of parameters in PGATCTL	
:	
Table B-6 PGATCTL Parameters	
Parameter	Type
---	---
For a gateway using SNA: Conversation identifier returned by the For a gateway using TCP/IP: Socket file descriptor returned by the	
Trace control function to be performed. The valid values are: ' ' '	
Trace flags. Turn on Refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" in the Oracle Database Gateway for APPC Installation and Configuration Guide for AIX 5L Based Systems (64-Bit), HP-UX Itanium, Solaris Operating System (SPARC 64-Bit), Linux x86, and Linux x86-64 or Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.	
This function is called to write a line of user data into the PGA trace file. Using PGATRAC	
, the flow within a PL/SQL procedure can be traced, along with the events traced, based on the TRACE_LEVEL	
at %ORACLE_HOME%\\dg4appc\\admin\initsid.ora	
for Microsoft Windows or $ORACLE_HOME/dg4appc/admin/initsid.ora	
on UNIX based systems. This is a useful debugging tool when developing a new PL/SQL application.	
Table B-7 presents the type, datatype and description of the PGATRAC	
parameter:	
The Oracle Database Gateway for APPC requires the use of the RAW datatype to transfer data to and from PL/SQL without any alteration by Oracle Net. This is necessary because only the PL/SQL applications have information about the format of the data being sent to and received from the remote transaction programs. Oracle Net only has information about the systems where the PL/SQL application and the gateway server are running. If Oracle Net is allowed to perform translation on the data flowing between PL/SQL and the gateway, the data can end up in the wrong format.	
This appendix contains the following sections:	
Note: The IBM VS COBOL II compiler has been desupported. However, the string "IBMVSCOBOLII " is still used as the value of the compiler name parameter to represent any COBOL compiler you choose to use. The value IBMVSCOBOLII should still be used and does not create a dependency on any specific version of the compiler.	
The UTL_PG	
package is an extension to PL/SQL that provides a full set of functions for converting COBOL number formats into Oracle numbers and Oracle numbers into COBOL number formats.	
UTL_PG	
conversion format RAWs are not portable in this release. Additionally, generation of conversion format RAWs on one system and transfer to another system is not supported.	
The functions listed in this section are called in the standard PL/SQL manner:	
Specifically for UTL_PG	
routines, this is:	
For each function listed below, the function name, arguments and their datatypes, and the return value datatype are provided. Unless otherwise specified, the parameters are IN	
, not OUT	
, parameters.	
The following UTL_PG	
functions share several similar parameters among themselves:	
RAW_TO_NUMBER	
MAKE_NUMBER_TO_RAW_FORMAT	
MAKE_RAW_TO_NUMBER_FORMAT	
NUMBER_TO_RAW	
These similar parameters are described in detail in Table C-1 and then referenced only by name in subsequent tables listing the parameters for each UTL_PG	
function in this Appendix.	
Table C-1 describes the input parameters that are common to all of the UTL_PG	
functions:	
Table C-1 Input Parameters Common to UTL_PG Function	
Parameter	Description
---	---
is the compiler datatype mask. This is the datatype to be converted, specified in the source language of the named compiler (
is the compiler datatype mask options or	
is the compiler environment clause or	
is the compiler name. The only supported value is	
is the compiler options or	
is the zoned decimal code page specified in Globalization Support format,	
is the warning indicator. A Boolean indicator which controls whether conversion warning messages are to be returned in the wmsgblk	
is the warning message block declared size in bytes. It is a	
Table C-2 describes the output parameter that is common to the UTL_PG	
functions:	
Table C-2 Output Parameters Common to UTL_PG Functions	
Parameter	Description
---	---
is the warning message block. It is a RAW value which can contain multiple warnings in both full message and substituted parameter formats, if If	
RAW_TO_NUMBER	
converts a RAW byte-string r	
from the remote host internal format specified by mask,	
maskopts,	
envrnmnt,	
compname,	
compopts,	
and nlslang	
into an Oracle number.	
Warnings are issued, if enabled, when the conversion specified conflicts with the conversion implied by the data or when conflicting format specifications are supplied.	
For detailed information about the mask,	
maskopts,	
envrnmnt,	
compname	
, and compopts	
arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values".	
Syntax	
Where Table C-3 describes the parameters in this function:	
Table C-3 RAW_TO_NUMBER Function Parameters	
Parameter	Description
---	---
is the remote host data to be converted.	
is the compiler datatype mask.	
are the compiler datatype mask options or	
is the compiler environment clause or	
is the compiler name.	
are the compiler options or	
is the zoned decimal code page in Globalization Support format.	
is a warning indicator.	
is the warning message block size in bytes.	
is the warning message block. This is an	
Defaults and Optional Parameters	
Table C-4 describes the default and optional parameters of the RAW_TO_NUMBER	
function:	
Table C-4 Optional and Default Parameters of the RAW_TO_NUMBER Function	
Parameters	Description
---	---
null allowed, no default value	
null allowed, no default value	
null allowed, no default value	
Return Value	
An Oracle number corresponding in value to r	
.	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages for an explanation and information about how to handle it.	
NUMBER_TO_RAW	
converts an Oracle number n	
of declared precision and scale into a RAW byte-string in the remote host internal format specified by mask	
, maskopts,	
envrnmnt,	
compname,	
compopts	
, and nlslang	
.	
Warnings are issued, if enabled, when the conversion specified conflicts with the conversion implied by the data or when conflicting format specifications are supplied.	
For detailed information about the mask,	
maskopts,	
envrnmnt,	
compname,	
and compopts	
arguments, refer to"NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values".	
Syntax	
Where Table C-5 describes the parameters in this function:	
Table C-5 NUMBER_TO_RAW Function Parameters	
Parameter	Description
---	---
is the Oracle number to be converted.	
is the compiler datatype mask.	
are the compiler datatype mask options or	
is the compiler environment clause or	
is the compiler name.	
are the compiler options or	
is the zoned decimal code page in Globalization Support format.	
is a warning indicator	
is the warning message block size in bytes.	
is the warning message block. This is an	
Defaults and Optional Parameters	
Table C-6 describes the defaults and optional parameters for the NUMBER_TO_RAW	
function:	
Table C-6 Defaults and Optional Parameters for NUMBER_TO_RAW Function	
Parameter	Description
---	---
null allowed, no default value	
null allowed, no default value	
null allowed, no default value	
A RAW value corresponding in value to n	
.	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages for an explanation and information about how to handle it.	
MAKE_RAW_TO_NUMBER_FORMAT	
makes a RAW_TO_NUMBER	
format conversion specification used to convert a RAW byte-string from the remote host internal format specified by mask,	
maskopts,	
envrnmnt,	
compname,	
compopts,	
and nlslang	
into an Oracle number of comparable precision and scale.	
Warnings are issued, if enabled, when the conversion specified conflicts with the conversion implied by the data or when conflicting format specifications are supplied.	
This function returns a RAW value containing the conversion format which can be passed to UTL_PG.RAW_TO_NUMBER_FORMAT	
.	
For detailed information about the mask,	
maskopts	
, envrnmnt	
, compname	
, and compopts	
arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values".	
Syntax	
Where Table C-7 describes the parameters in this function:	
Table C-7 MAKE_RAW_TO_NUMBER_FORMAT Function Parameters	
Parameter	Description
---	---
is the compiler datatype mask.	
are the compiler datatype mask options or	
is the compiler environment clause or	
is the compiler name.	
are the compiler options or	
is the zoned decimal code page in Globalization Support format.	
is a warning indicator.	
is the warning message block size in bytes.	
is the warning message block. This is an	
Defaults and Optional Parameters	
Table C-8 describes the defaults and optional parameters of the MAKE_RAW_TO_NUMBER_FORMAT	
function:	
Table C-8 Default and Optional MAKE_RAW_TO_NUMBER_FORMAT Parameters	
Parameter	Description
---	---
null allowed, no default value	
null allowed, no default value	
null allowed, no default value	
Return Value	
A RAW(2048)	
format conversion specification for RAW_TO_NUMBER	
.	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages guide for an explanation and information about how to handle it.	
MAKE_NUMBER_TO_RAW_FORMAT	
makes a NUMBER_TO_RAW	
format conversion specification used to convert an Oracle number of declared precision and scale to a RAW byte-string in the remote host internal format specified by mask,	
maskopts,	
envrnmnt	
, compname	
, compopts	
, and nlslang.	
Warnings are issued, if enabled, when the conversion specified conflicts with the conversion implied by the data or when conflicting format specifications are supplied.	
This function returns a RAW value containing the conversion format which can be passed to UTL_PG.NUMBER_TO_RAW_FORMAT	
. The implementation length of the result format RAW is 2048 bytes.	
For detailed information about the mask,	
maskopts,	
envrnmnt,	
compname	
, and compopts	
arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values".	
Syntax	
Where Table C-9 describes the parameters in this function:	
Table C-9 MAKE_NUMBER_TO_RAW_FORMAT Function Parameters	
Parameter	Description
---	---
is the compiler datatype mask.	
are the compiler datatype mask options or	
is the compiler environment clause or	
is the compiler name.	
are the compiler options or	
is the zoned decimal code page in Globalization Support format.	
is a warning indicator	
is the warning message block size in bytes.	
is the warning message block. This is an	
Defaults and Optional Parameters	
Table C-10 describes the defaults and optional parameters for the MAKE_NUMBER_TO_RAW_FORMAT	
function:	
Table C-10 Optional, Default Parameters: MAKE_NUMBER_TO_RAW_FORMAT	
Parameter	Description
---	---
null allowed, no default value	
null allowed, no default value	
null allowed, no default value	
Return Value	
A RAW(2048)	
format conversion specification for NUMBER_TO_RAW	
.	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages guide for an explanation and information about how to handle it.	
RAW_TO_NUMBER_FORMAT	
converts, according to the RAW_TO_NUMBER	
conversion format r2nfmt	
, a RAW byte-string rawval	
in the remote host internal format into an Oracle number.	
Syntax	
where Table C-11 describes the parameters in this function:	
Table C-11 RAW_TO_NUMBER_FORMAT Function Parameters	
Parameter	Description
---	---
is the remote host data to be converted.	
is a	
Defaults	
None	
Return Value	
An Oracle number corresponding in value to r	
.	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages guide for an explanation and information about how to handle it.	
NUMBER_TO_RAW_FORMAT	
converts, according to the NUMBER_TO_RAW	
conversion format n2rfmt	
, an Oracle number numval	
of declared precision and scale into a RAW byte-string in the remote host internal format.	
Syntax	
Where Table C-12 describes the parameters in this function:	
Table C-12 NUMBER_TO_RAW_FORMAT Function Parameters	
Parameters	Description
---	---
is the Oracle number to be converted.	
is a	
Defaults	
None	
Return Value	
A RAW value corresponding in value to n	
.	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages guide for an explanation and information about how to handle it.	
WMSGCNT	
tests a wmsgblk	
to determine how many warnings, if any, are present.	
Syntax	
Where Table C-13 describes the parameter in this function.	
Table C-13 WMSGCNT Function Parameter	
Parameter	Description
---	---
is the warning message block returned from one of the following functions:	
Defaults	
None	
Return Value	
A BINARY_INTEGER	
value equal to the count of warnings present in the RAW wmsgblk	
.	
Table C-14 lists possible returned values:	
Table C-14 WMSGCNT Return Values	
Description	
---	---
indicates a count of warnings present in	
indicates that no warnings are present in	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages guide for an explanation and information about how to handle it.	
WMSG	
extracts a warning message specified by wmsgitem	
from wmsgblk	
.	
Syntax	
Where Table C-15 describes the parameters in this function:	
Table C-15 WMSG Function Parameters	
Parameter	Description
---	---
is a RAW warning message block returned from one of the following functions:	
is a	
is an	
is a	
is a warnparm1;;warnparm2;;...;;warnparmn where each warning parameter is delimited by a double semicolon.	
Defaults	
None	
Return Value	
A BINARY_INTEGER	
value containing a status return code.	
A return code of "0" indicates that wmsgno	
, wmsgtext	
, and wmsgfill	
are assigned and valid.	
Error and Warning Messages	
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error Messages guide for an explanation and information about how to handle it.	
Table C-16 describes the error messages you could receive:	
Table C-16 WMSG Function Errors	
Error	Description
---	---
indicating the warning specified by	
indicating an invalid message block.	
indicating	
indicating there are too many substituted warning parameters.	
This table lists the valid values for the format arguments for NUMBER_TO_RAW	
and RAW_TO_NUMBER	
and related functions. Following are examples of some valid COBOL picture masks. Any valid COBOL picture mask may be used. Refer to the appropriate IBM COBOL programming guides for an explanation of COBOL picture masks.	
:	
COBOL picture mask options :	
COBOL environment clause x	
where x	
is a valid currency sign characterYou must convert datatypes and data formats properly when you are using the PGAU tool to generate TIPs and when you are developing a custom TIP using PL/SQL and the UTL_RAW	
and UTL_PG	
functions.	
Read this appendix to learn about datatype conversion as it relates to TIPs.	
This appendix contains the following sections:	
PGAU-generated TIPs perform length checking at the end of every parameter sent and received.	
Table D-1 provides a list of length parameters generated by PGAU:	
Table D-1 Length Parameters	
Parameter	Description
---	---
Is computed by PGAU when the TIP is generated.	
Is summed by the TIP from each converted field.	
Is the transmitted send data length and is also equal to the actual length for send parameters.	
Is the transmitted receive data length.	
An exception is raised when the convert length of a sent parameter does not equal its expected length. This occurs if too many or too few send field conversions are performed.	
An exception is raised when the convert length of a received parameter does not equal its received length. These length exceptions result when too few or too many conversions are performed.	
A warning is issued when the expected length of a received parameter does not equal its convert or received length and data conversion tracing is enabled. This occurs when a maximum length record is expected, but a shorter record is transmitted and correctly converted.	
PGAU generates TIPs that support transmission of individual data parameters which exceed 32K bytes.	
PGAU includes this support automatically when PGAU GENERATE	
processing detects the maximum length of a data parameter exceeding 32K.	
This support is driven by the data definitions placed in the PG DD and cannot be selected by the user. To include the support, the data definition must actually or possible exceed 32K. To remove the support, you must decrease the parameter length to less than 32K, REDEFINE	
the data, and GENERATE	
the TIP again.	
This support tests for field positions crossing the 32K buffer boundaries before and after conversion of those fields which lie across such boundaries. In the case of repeating groups, This can be many fields, for repeating groups, or few fields in the case of simple linear records.	
Each test and the corresponding buffer management logic adds overhead.	
Caution: The target of aREDEFINE clause cannot reside in a previously processed buffer. Run-time TIP processing of the fields containing such REDEFINE clauses get unpredictable results.	
The PG DD and TIPs generated by PGAU support COBOL, specified as IBMVSCOBOLII	
when defining data.	
When USAGE(PASS)	
has been specified on the PGAU DEFINE DATA	
statement, the following datatype and format conversions are supported:	
PGAU TIPs convert the COBOL X	
datatype to a PL/SQL CHAR	
datatype of the same character length. Globalization Support character set translation is also performed.	
Note: COBOL lacks a datatype specifically designated for variable length data. It is represented in COBOL as a subgroup containing a PIC 9	
length field followed by a PIC X	
character field. For example:	
10 NAME	
.	
1	
5 LENGTH PIC S9(4)	
.	
15 LETTERS PIC X(30)	
.	
Given this context, it cannot be guaranteed that all instances of an S9(4)	
field followed by an X	
field are always variable length data. Rather than PGAU TIPs converting the above COBOL group NAME	
to a VARCHAR	
, the TIPs instead construct a nested PL/SQL record as follows:	
It is the client application's responsibility (based upon specific knowledge of the remote host data) to extract NAME.LENGTH	
characters from NAME.LETTERS	
and assign the result to a PL/SQL VARCHAR	
, if a VARCHAR	
is desired.	
Character set conversion is performed for single byte encoded:	
DEFINE TRANSACTION NLS_LANGUAGE	
character set for an entire transaction, or REDEFINE DATA REMOTE_LANGUAGE	
character set for a single field, if specified. LANGUAGE	
character set of integrating server for an entire transaction, or REDEFINE DATA LOCAL_LANGUAGE	
character set for a single field, if specified. PIC G Datatype Conversions	
PGAU generated TIPs convert the COBOL G	
datatype to a PL/SQL VARCHAR2	
datatype of the same length, allowing 2 bytes for every character position.	
Character set conversion is performed for double-byte and multi-byte encoded:	
DEFINE TRANSACTION REMOTE_MBCS	
character set for an entire transaction, or REDEFINE DATA REMOTE_LANGUAGE	
character set for a single field, if specified. DEFINE TRANSACTION LOCAL_MBCS	
character set for an entire transaction, or REDEFINE DATA LOCAL_LANGUAGE	
character set for a single field, if specified. Alphanumeric and DBCS Editing Field Positions	
Table D-2 illustrates how PGAU interprets COBOL symbols in datatype conversions, by providing the definitions for the symbols.	
Table D-2 COBOL Symbol Definitions	
COBOL Symbols	Oracle Definition of COBOL Symbols - Data Content
---	---
'B'	blank (1 byte SBCS or 2 bytes DBCS depending on USAGE)
'0'	zero (1 byte SBCS)
'/'	forward slash (1 byte SBCS)
'G'	double byte
Edited positions in COBOL statement data received from the remote host are converted by PGAU along with the entire field and passed to the client application in the corresponding PL/SQL VARCHAR2	
output variable.	
When editing symbols are present, they are interpreted to mean the remote host field contains the COBOL data content and length indicated. The editing positions are included in the length of the data field, but conversion of all field positions is processed by PGAU as a single string and no special scanning or translation is done for edited byte positions.	
Edited positions in COBOL statement data sent to the remote host are converted by PGAU along with the entire PL/SQL VARCHAR2	
input variable passed from the client application.	
Table D-3 provides an example of how PGAU converts COBOL datatypes:	
Table D-3 COBOL-PGAU Conversion	
COBOL Datatype	Description of Conversion by PGAU
---	---
Is an alphanumeric field 7 bytes in length and would be converted in a single	
Is a DBCS field 12 bytes in length and would be converted in a single	
PGAU TIPs convert the COBOL The following are supported:	
For	
Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values" in Appendix C, "The UTL_PG Interface" for more information about numeric datatype conversions.	
COBOL If a	
Table D-4 describes format conversion:	
Table D-4 Format Conversion Descriptions	
Item	Description
---	---
This causes remote host transaction data to be converted as a PL/SQL	
This causes warnings to be issued during TIP generation. No alignment is performed. This is treated as documentation. The remote host transaction data is converted as a PL/SQL	
This is an Oracle extension to the data definition as stored in the PG DD. This extension exists only in the PGAU context and is not valid COBOL syntax. The purpose of this extension is to provide a means for variable-length character data to be processed more efficiently by the TIP conversion logic. This is an alternative to defining a variable-length PIC X field as Note that the use of this construct does not affect the COBOL program. The The	
This causes conversion of exactly '	
This causes conversion of at least ' Range conversion: PGAU-generated TIPs use a '	
A single PL/SQL variable declaration corresponds to a Lengths of renamed fields do not contribute to the overall parameter data length because the original fields dictate the lengths.	
The ' The purpose of this extension is to provide a means for the gateway administrator or application developer to specify the criteria by which the redefinition is to be applied. For example, a record type field is often present in a record and different record formats apply depending on which record type is being processed. The specification of which type value applies to which redefinition is typically buried in the transaction programming logic, not in the data definition. To specify which conversion to perform on redefined formats in the TIP, the PGAU generates PL/SQL nested record declarations which correspond in name and datatype to the subordinate elements covered by the	
This permits remote host copybooks to include definitions which	
This causes the numeric field to be aligned on boundaries as dictated by the remote host environment, compiler language, and datatype. Numeric conversion is performed on the aligned data fields according to numeric datatype, as discussed in "PIC X Datatype Conversions", for both	
This causes warnings to be issued during TIP generation and no realignment is performed. This is treated as documentation. Numeric conversion is performed on the aligned data fields according to numeric datatype, as discussed in "PIC X Datatype Conversions", for both	
When USAGE(ASIS)	
is specified on the PGAU DEFINE DATA	
statement, no conversion is performed. Consequently, each such field is simply copied to a PL/SQL RAW of the same byte length. No conversion, translation, or reformatting is done.	
When USAGE(SKIP)	
is specified on the PGAU DEFINE DATA	
statement, no data exchange is performed. The data is skipped as if it did not exist. Consequently, such fields are not selected from the PG DD, not reflected in the TIP logic, and presumed absent from the data streams exchanged with the remote host. The purpose of "SKIP	
" is to have definitions in the PG DD, but not active, perhaps because a remote host has either removed the field or has yet to include the field. SKIP	
allows an existing data definition to be used even though some fields do not exist at the remote host.	
COBOL special characters in record, group, and element names are translated when PGAU DEFINE	
inserts definitions into the PG DD, and by PGAU GENERATE	
when definitions are selected from the PG DD. Special characters are translated as follows:	
PL/SQL variable names are fully qualified and composed from:	
CHAR	
or NUMBER	
corresponding to non-repeating COBOL elements. TABLE	
corresponding to COBOL elements which fall within an OCCURS	
or OCCURS DEPENDING ON	
group (COBOL repeating fields correspond to PL/SQL nested RECORD	
s of TABLE	
's). Note that when referencing PL/SQL variables from calling applications, the TIP package name must be prefixed as the leftmost qualifier. Thus the fully qualified reference to the PL/SQL variable which corresponds to:	
SKILL	
is: HOME_ADDRESS	
ZIP	
is: Truncated and Non-Unique Names	
PGAU truncates field names and corresponding PL/SQL variable names when the name exceeds:	
This is due to the need to suffix each field or PL/SQL variable name with:	
_Typ	
" for group names _Tbl	
" for element names with a repeating group or	
The rightmost four characters are truncated. This imposes the restriction that names be unique to 26	
characters.	
COBOL allows repetitive definition of the same group or element names within a record, and the context of the higher level groups serves to uniquely qualify names. However, because PGAU-generated TIPs declare PL/SQL record variables which reference nested PL/SQL records for subordinate groups and fields, such nested PL/SQL record types can have duplicate names.	
Given the following COBOL definition, note that ZIP is uniquely qualified in COBOL, but the corresponding PL/SQL declaration would have a duplicate nested record type for ZIP.	
PGAU avoids declaring duplicate nested record types, and generates the following PL/SQL:	
However, in the case where multiple nested groups have the same name but have different subfields (see ZIP	
following):	
PGAU alters the name of the PL/SQL nested record type for each declaration in which the subfields differ in name, datatype, or options. Note the "02	
" appended to the second declaration (ZIP_Typ02	
), and its reference in OFFICE_ADDRESS	
.	
And the fully qualified reference to the PL/SQL variable which corresponds to:	
HOME_ADDRESS.ZIP	
is: OFFICE_ADDRESS.ZIP	
is: Note that the nested record type name ZIP_Typ02	
is not used in the reference, but is implicit within PL/SQL's association of the nested records.	
PGAU generates complete and operational TIPs for most circumstances. TIP internals information is provided to assist you in diagnosing problems with PGAU-generated TIPs, and in writing custom TIPs, if you choose to do so.	
This appendix refers to a sample called pgadb2i	
. The source for this TIP is in file pgadb2i.sql	
in the %ORACLE_HOME%\dg4appc\demo\CICS	
directory for Microsoft Windows and $ORACLE_HOME/dg4appc/demo/CICS	
directory for UNIX based systems.	
This appendix refers to a sample called pgaims	
. The source for this TIP is in file pgtflipd.sql	
in the %ORACLE_HOME%\dg4appc\demo\IMS	
directory for Microsoft Windows and $ORACLE_HOME/dg4appc/demo/IMS	
directory on UNIX based systems.	
This appendix contains the following sections:	
Several topics are important to understanding TIP operation and development; following is a list of concepts that are key to TIP operation and suggested sources to which you can refer for more information.	
UTL_PG	
Interface, refer to Appendix C, "The UTL_PG Interface". PGAU GENERATE	
writes each output TIP into a standard PL/SQL package specification file and body file. This separation is beneficial and important. Refer to the Oracle Database Advanced Application Developer's Guide and the Oracle Database PL/SQL Language Reference for more information. Also refer to "GENERATE" in Chapter 2, "Procedural Gateway Administration Utility" for more information about building the PL/SQL package.	
TIPs are PL/SQL packages. Any time a package specification is recompiled, all objects which depend on that package are invalidated and implicitly recompiled as they are referenced, even if the specification did not change.	
Objects which depend on a TIP specification include client applications that call the TIP to interact with remote host transactions.	
It might be important to change the TIP body for the following reasons:	
UTL_RAW	
or UTL_PG	
conversion functions upon which the TIP body relies. Refer to Appendix C, "The UTL_PG Interface" for more detailed information about these functions.	
Provided that the TIP specification does not need to change or be recompiled, the TIP body can be regenerated and recompiled to pick up changes without causing invalidation and implicit recompilation of client applications that call the TIP.	
It is for this reason that PGAU now separates output TIPs into specification and body files. Refer to "GENERATE" in Chapter 2, "Procedural Gateway Administration Utility" for a discussion of file identification.	
Independent TIP body changes are internal and require no change to the TIP specification. Examples of such changes include: a change in UTL_RAW	
or UTL_PG	
conversions, inclusion of diagnostics, or a change to network transaction parameters.	
In these cases, when PGAU is used to regenerate the TIP, the new TIP specification file can be saved or discarded, but should not be recompiled. The new TIP body should be recompiled under SQL*Plus. Provided that the TIP body change is independent, the new body compilation completes without errors and the former TIP specification remains valid.	
To determine if a specification has remained valid, issue the following statements from SQL*Plus, depending upon your communication protocol:	
The LAST_DDL	
column is the date and time at which the last DDL change against the object was done. It shows that the order of compilation was:	
Note that the recompilation of the body does not invalidate its dependent object, the specification, or the client application indirectly.	
The LAST_DDL	
column is the date and time at which the last DDL change against the object was done. It shows that the order of compilation was:	
Note that the recompilation of the body does not invalidate its dependent object, the specification, or the client application indirectly.	
You can also change the data structures or call exchange sequences of the remote host transaction. However, this kind of change is exposed to dependent client applications because the public datatypes or functions in the TIP specification will also change and necessitate recompilation, which in turn causes the Oracle database to recompile such dependent client applications.	
Note that the recompilation of the specification has invalidated its dependent objects, the three client applications in addition to the package body. To complete these changes, the body must be recompiled to bring it into compliance with the specification and then the three client applications could be compiled manually, or the Oracle database compiles them automatically as they are referenced.	
If the client applications are recompiled by the Oracle database as they are referenced, there is a one-time delay during recompilation.	
Recompilation errors in the client application, if any, are due to:	
If you make a mistake when you generate a tip (for example, if you alter a PG DD transaction definition, or if you have inadvertently specified the wrong version during regeneration), then the recompiled body will not match the stored specification; as a result, the Oracle database would invalidate the specification and any dependent client applications.	
You may have to regenerate and recompile the TIP and its dependent client applications to restore correct operation.	
Refer to "Listing Dependency Management Information," in the Oracle Database Advanced Application Developer's Guide for more information.	
Use the following sample input statements and report output for the Procedural Gateway Administration Utility to guide you in designing your own PGAU statements.	
This appendix contains these sample PGAU statements:	
where the file emp.cob	
contains the following:	
where the file db2.cob	
contains the following:	
A user's high-level application now uses this TIP by referencing these PL/SQL datatypes passed and returned.	
Table F-1 provides a description of the TIP user transaction datatypes in package name PGADB2I	
:	
Table F-1 TIP User Transaction Datatypes Used in Package Name PGADB2I	
Datatype	Description
---	---
is a PL/SQL variable corresponding to COBOL	
Which is a PL/SQL	
Which is a PL/SQL	
and the application calls:	
The examples are sample definitions of DATA	
, CALL	
, and TRANSACTION	
entries with implicit versioning.	
This example creates a new DATA	
version of 'EMPREC	
' because 'EMPREC	
' DATA	
was defined previously:	
where the file emp2.cob	
contains the following:	
To determine which DATA	
version number was assigned, this SQL query can be issued:	
To determine additional information related to the updated version of 'EMPREC	
' this query can be used:	
This example creates a new CALL	
version of 'DB2IMAIN	
' because the 'DB2IMAIN	
' CALL	
was defined previously:	
where ddddd	
is the version number of the EMPREC DATA	
definition queried after the previous DEFINE DATA	
updated EMPREC	
.	
To determine which call version number was assigned, this SQL query can be issued:	
To determine additional information related to the updated version of 'DB2IMAIN	
' this query can be used:	
The DEFINE TRANSACTION	
example creates a new TRANSACTION	
version of 'DB2I	
' because the 'DB2I' TRANSACTION	
was defined previously. The essential difference of the new version of the DB2I transaction is that the first call uses a new PL/SQL record format "NEWEMP	
" (which corresponds to the COBOL NEWEMP	
format) to query the employee data.	
Caution: Record format changes like that discussed above must be synchronized with the requirements of the remote transaction program. Changes to the PGA TIP alone result in errors. A new remote transaction program with the corequisite changes could be running on a separate CICS system and started through the change from "CICSPROD " to "CICSTEST " in the SIDEPROFILE parameter below.	
where ccccc	
is the version number of the DB2IMAIN	
CALL	
definition queried after the previous DEFINE CALL	
updated DB2IMAIN	
.	
There are two versions of the DB2I transaction definition in the PGA DD. The original uses the old "DCLEMP	
" record format and starts transaction "DB2I	
" on the production CICS system. The latest uses the "NEWEMP	
" record format and starts transaction "DB2I	
" on the test CICS system.	
To determine which transaction version number was assigned, this SQL query can be issued:	
To determine additional information related to the updated version of 'DB2I	
' this query can be used:	
This example generates a new package using the previously defined new versions of the TRANSACTION	
, CALL	
, and DATA	
definitions:	
where ttttt	
is the version number of the DB2I TRANSACTION	
definition queried after the previous DEFINE TRANSACTION	
updated DB2I	
.	
Note that the previous PL/SQL package files pgadb2i.pkh	
and pgadb2i.pkb	
are overwritten. To keep the new package separate, change the output file specification. For example:	
A user's high-level application now uses this TIP by referencing the PL/SQL datatypes passed and returned.	
Table F-2 provides a description of the TIP user transaction datatypes in package name NEWDB2I	
:	
Table F-2 TIP User Transaction Datatypes for Package Name NEWDB2I	
Datatype	Description
---	---
Is a PL/SQL variable corresponding to COBOL	
Is a PL/SQL	
Is a PL/SQL	
and the application calls:
Single-field redefinition in which EDLEVEL USAGE
becomes COMP-3
:
By default, this redefines the latest version of EMPREC
which implicitly affects the latest call and transaction definitions which refer to it.
Sample multi-field redefinition in which the employee's first and last name fields are expanded and the employee's middle initial is removed.
where the file emp1.cob
contains the following:
The assumption is that version 1 of the data definition for 'EMPREC
' is to be redefined. This causes a redefinition of the first 'EMPREC
' sample data definition without changing the version number. Thus, existing call and transaction definitions which referenced version 1 of 'EMPREC
' automatically reflect the changed 'EMPREC
'. This change becomes effective when a TIP is next generated for a transaction that references the call which referenced version 1 of 'EMPREC
'.
This implicitly affects both versions of the transaction because both refer to EMPREC
in the second call to update the employee data.
These samples illustrate the deletion of a specific version of a definition which has multiple versions, followed by deletion of all versions of a specific named definition.
Deletion of DATA
Definitions:
Note that the previous UNDEFINE
statements leave the DATA
definition for EMPNO
and the CALL
definition for DB2IDIAG
in the PGA DD.
 Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved. |