
[image: Oracle Corporation]

Oracle?? OLAP

Java API Developer's Guide

12c Release 1 (12.1)

E17707-05

June 2014

Oracle OLAP Java API Developer's Guide, 12c Release 1 (12.1)

E17707-05

Copyright ?? 2000, 2014,??Oracle and/or its affiliates. All rights reserved.

Primary Author: ??David McDermid

Contributor: ??The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an inspiration to all who worked on this release.

Contributors: ??David Greenfield, Jim Harstsing, Scott Feinstein, Anne Murphy, Richard Samuels, Steve Mesropian, Chuck Venezia, Afsaneh Koochek

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

List of Examples

List of Figures

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

Changes in This Release for Oracle OLAP Java API Developer's Guide

	Changes in Oracle Database 12c Release 1 (12.1)

1 Introduction to the OLAP Java API

	OLAP Java API Overview
	What the OLAP Java API Can Do
	Describing the Classes in the OLAP Java API
	Describing the Dimensional Data Model
	Implementing the Dimensional Data Model
	Organizing the Data for OLAP

	Accessing Data Through the OLAP Java API
	Creating Queries
	Specifying Dimension Members
	Creating Cursors

	Sample Schema for OLAP Java API Examples
	Tasks That an OLAP Java API Application Performs

2 Understanding OLAP Java API Metadata

	Overview of OLAP Java API Metadata Classes
	Identifying, Describing, and Classifying Metadata Objects
	Identifying Objects
	Getting and Setting Names
	Describing Unique Identifiers
	Supporting Legacy Metadata Objects

	Using Descriptions
	Using Classifications

	Providing Metadata Objects
	Describing Metadata Providers
	Getting Metadata Objects by ID
	Exporting and Importing Metadata as XML Templates

	Representing Schemas
	Representing the Root Schema
	Representing Database Schemas
	Representing Organizational Schemas

	Providing Access to Data Sources
	Representing Cubes and Measures
	Representing Cubes
	Representing Measures

	Representing Dimensions, Levels, and Hierarchies
	Representing Dimensions
	Representing Dimension Levels
	Representing Hierarchies
	Representing Hierarchy Levels

	Representing Dimension Attributes
	Describing the MdmAttribute Class
	Describing the MdmBaseAttribute Class
	Describing the MdmDerivedAttribute Class

	Using OLAP Views
	Getting Cube View and View Column Names
	Getting Dimension and Hierarchy View and View Column Names
	Using OLAP View Columns
	Using Source Objects

3 Discovering Metadata

	Connecting to Oracle OLAP
	Prerequisites for Connecting
	Establishing a Connection
	Creating a JDBC Connection
	Creating a DataProvider and a UserSession

	Closing the Connection and the DataProvider

	Overview of the Procedure for Discovering Metadata
	Purpose of Discovering the Metadata
	Steps in Discovering the Metadata

	Creating an MdmMetadataProvider
	Getting the MdmSchema Objects
	Getting the Contents of an MdmSchema
	Getting the Objects Contained by an MdmPrimaryDimension
	Getting the Hierarchies and Levels of an MdmPrimaryDimension
	Getting the Attributes for an MdmPrimaryDimension

	Getting the Source for a Metadata Object

4 Creating Metadata and Analytic Workspaces

	Overview of Creating and Mapping Metadata
	Creating an Analytic Workspace
	Creating the Dimensions, Levels, and Hierarchies
	Creating and Mapping Dimensions
	Creating and Mapping Dimension Levels
	Creating and Mapping Hierarchies
	Creating and Mapping an MdmLevelHierarchy
	Creating and Mapping an MdmValueHierarchy

	Creating Attributes
	Creating Cubes and Measures
	Creating Cubes
	Creating and Mapping Measures

	Committing Transactions
	Exporting and Importing XML Templates
	Building an Analytic Workspace

5 Understanding Source Objects

	Overview of Source Objects
	Kinds of Source Objects
	Characteristics of Source Objects
	Elements and Values of a Source
	Data Type of a Source
	Type of a Source
	Source Identification and SourceDefinition of a Source

	Inputs and Outputs of a Source
	Describing the join Method
	Describing the joined Parameter
	Describing the comparison Parameter
	Describing the comparisonRule Parameter
	Describing the visible Parameter

	Outputs of a Source
	Producing a Source with an Output
	Using COMPARISON_RULE_SELECT
	Using COMPARISON_RULE_REMOVE
	Producing a Source with Two Outputs
	Hiding an Output

	Inputs of a Source
	Primary Source Objects with Inputs
	Deriving a Source with an Input
	Type of Inputs

	Matching a Source with an Input
	Matching the Input of the Source for an MdmAttribute
	Matching the Inputs of a Measure
	Using the value Method to Derive a Source with an Input
	Using the value Method to Select Values of a Source
	Using the extract Method to Combine Elements of Source Objects

	Describing Parameterized Source Objects

6 Making Queries Using Source Methods

	Describing the Basic Source Methods
	Using the Basic Methods
	Using the alias Method
	Using the distinct Method
	Using the join Method
	Using the position Method
	Using the recursiveJoin Method
	Using the value Method
	Selecting Elements of a Source
	Reversing a Relation

	Using Other Source Methods
	Using the extract Method
	Creating a Cube and Pivoting Edges
	Drilling Up and Down in a Hierarchy
	Sorting Hierarchically by Measure Values
	Using NumberSource Methods To Compute the Share of Units Sold
	Selecting Based on Time Series Operations
	Selecting a Set of Elements Using Parameterized Source Objects

7 Using a TransactionProvider

	About Creating a Metadata Object or a Query in a Transaction
	Types of Transaction Objects
	Committing a Transaction
	About Transaction and Template Objects
	Beginning a Child Transaction
	About Rolling Back a Transaction
	Getting and Setting the Current Transaction

	Using TransactionProvider Objects

8 Understanding Cursor Classes and Concepts

	Overview of the OLAP Java API Cursor Objects
	Creating a Cursor
	Sources For Which You Cannot Create a Cursor
	Cursor Objects and Transaction Objects

	Cursor Classes
	Structure of a Cursor
	Specifying the Behavior of a Cursor

	CursorInfoSpecification Classes
	CursorManager Class
	Updating the CursorInfoSpecification for a CursorManager

	About Cursor Positions and Extent
	Positions of a ValueCursor
	Positions of a CompoundCursor
	About the Parent Starting and Ending Positions in a Cursor
	What is the Extent of a Cursor?

	About Fetch Sizes

9 Retrieving Query Results

	Retrieving the Results of a Query
	Getting Values from a Cursor

	Navigating a CompoundCursor for Different Displays of Data
	Specifying the Behavior of a Cursor
	Calculating Extent and Starting and Ending Positions of a Value
	Specifying a Fetch Size

10 Creating Dynamic Queries

	About Template Objects
	About Creating a Dynamic Source
	About Translating User Interface Elements into OLAP Java API Objects

	Overview of Template and Related Classes
	What Is the Relationship Between the Classes That Produce a Dynamic Source?
	Template Class
	MetadataState Interface
	SourceGenerator Interface
	DynamicDefinition Class

	Designing and Implementing a Template
	Implementing the Classes for a Template
	Implementing an Application That Uses Templates

A Setting Up the Development Environment

	Overview
	Required Class Libraries
	Obtaining the Class Libraries

B SingleSelectionTemplate Class

	Code for the SingleSelectionTemplate Class

Index

List of Examples

	2-1 Associating a Description with an MdmObject
	2-2 Values in OLAP View Columns After setPopulateLineage(false)
	2-3 Values in OLAP View Columns After setPopulateLineage(true)
	2-4 Basic Cube View Query
	2-5 Basic Cube Query Using Source Objects
	3-1 Getting a JDBC OracleConnection
	3-2 Creating a DataProvider
	3-3 Closing the Connection
	3-4 Creating an MdmMetadataProvider
	3-5 Getting the MdmSchema Objects
	3-6 Getting a Single MdmDatabaseSchema
	3-7 Getting the Dimensions and Measures of an MdmDatabaseSchema
	3-8 Getting the Dimensions and Measures of an MdmCube
	3-9 Getting the Hierarchies and Levels of a Dimension
	3-10 Getting the MdmAttribute Objects of an MdmPrimaryDimension
	3-11 Getting a Primary Source for a Metadata Object
	4-1 Creating an AW
	4-2 Creating and Deploying an MdmStandardDimension
	4-3 Creating and Mapping an MdmDimensionLevel
	4-4 Creating and Mapping MdmLevelHierarchy and MdmHierarchyLevel Objects
	4-5 Creating an MdmValueHierarchy
	4-6 Creating an MdmBaseAttribute
	4-7 Creating and Mapping an MdmCube
	4-8 Creating and Mapping Measures
	4-9 Committing Transactions
	4-10 Exporting to an XML Template
	4-11 Building an Analytic Workspace
	5-1 Using the isSubtypeOf Method
	5-2 A Simple Join That Produces a Source with an Output
	5-3 A Simple Join That Selects Elements of the Joined Source
	5-4 A Simple Join That Removes Elements of the Joined Source
	5-5 A Simple Join That Produces a Source with Two Outputs
	5-6 A Simple Join That Hides An Output
	5-7 Getting an Attribute for a Dimension Member
	5-8 Getting Measure Values
	5-9 Using the value Method to Relate a Source to Itself
	5-10 Using the value Method to Select Elements of a Source
	5-11 Using Derived Source Objects to Select Measure Values
	5-12 Extracting Elements of a Source
	5-13 Using a Parameterized Source to Change a Dimension Selection
	6-1 Controlling Input-with-Source Matching with the alias Method
	6-2 Using the distinct Method
	6-3 Using COMPARISON_RULE_DESCENDING
	6-4 Selecting the First and Last Time Elements
	6-5 Sorting Products Hierarchically by Attribute
	6-6 Selecting a Subset of the Elements of a Source
	6-7 Using the value Method to Reverse a Relation
	6-8 Using the extract Method
	6-9 Creating a Cube and Pivoting the Edges
	6-10 Drilling in a Hierarchy
	6-11 Hierarchical Sorting by Measure Value
	6-12 Getting the Share of Units Sold
	6-13 Using the Lag Method
	6-14 Using the movingTotal Method
	6-15 Selecting a Range With NumberParameter Objects
	7-1 Committing the Current Transaction
	7-2 Rolling Back a Transaction
	7-3 Using Child Transaction Objects
	8-1 Creating the querySource Query
	8-2 Setting the CompoundCursor Position and Getting the Current Values
	8-3 Positions in an Asymmetric Query
	9-1 Creating a Cursor
	9-2 Getting a Single Value from a ValueCursor
	9-3 Getting All of the Values from a ValueCursor
	9-4 Getting ValueCursor Objects from a CompoundCursor
	9-5 Getting Values from a CompoundCursor with Nested Outputs
	9-6 Navigating for a Table View
	9-7 Navigating for a Crosstab View Without Pages
	9-8 Navigating for a Crosstab View With Pages
	9-9 Getting CursorSpecification Objects for a Source
	9-10 Specifying the Calculation of the Extent of a Cursor
	9-11 Specifying the Calculation of Starting and Ending Positions in a Parent
	9-12 Calculating the Span of the Positions in the Parent of a Value
	9-13 Specifying a Fetch Size
	10-1 Implementing a Template
	10-2 Implementing a MetadataState
	10-3 Implementing a SourceGenerator
	10-4 Getting the Source Produced by the Template

List of Figures

	2-1 The oracle.olapi.metadata Packages
	2-2 MdmObject and MdmDescription Associations
	2-3 Methods for Getting and Setting Descriptions Before 11g
	2-4 Associations Between MdmMetadataProvider and the MdmSchema Subclasses
	2-5 Associations of Dimensional Data Model Classes
	2-6 MdmCube and Associated Objects
	2-7 Regular, Ragged, and Skip-level Hierarchies
	8-1 Structure of the queryCursor CompoundCursor
	8-2 Cursor Positions in queryCursor
	8-3 Crosstab Display of queryCursor
	8-4 A Source and Two Cursors for Different Views of the Values

Preface

Oracle OLAP Java API Developer's Guide introduces Java programmers to the Oracle OLAP Java API, which is the Java application programming interface for Oracle OLAP. Through Oracle OLAP, the OLAP Java API provides access to data stored in an Oracle database, particularly data in an analytic workspace. The OLAP Java API capabilities for creating and maintaining analytic workspaces, and for querying, manipulating, and presenting data are particularly suited to applications that perform online analytical processing (OLAP) operations.

The preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle OLAP Java API Developer's Guide is intended for Java programmers who are responsible for creating applications that do one or more of the following:

	
Implement an Oracle OLAP metadata model.

	
Define, build, and maintain analytic workspaces.

	
Perform analysis using Oracle OLAP.

To use this manual, you should be familiar with Java, relational database management systems, data warehousing, OLAP concepts, and Oracle OLAP.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

	
Oracle OLAP Java API Reference

	
Oracle OLAP User's Guide

	
Oracle OLAP DML Reference

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Changes in This Release for Oracle OLAP Java API Developer's Guide

This preface lists changes in Oracle OLAP Java API Developer's Guide.

Changes in Oracle Database 12c Release 1 (12.1)

The following are changes in Oracle OLAP Java API Developer's Guide for Oracle Database 12c Release 1 (12.1).

Desupported Features

Some features previously described in this document are desupported in Oracle Database 12c Release 1 (12.1). See Oracle Database Upgrade Guide for information on desupported features.

1 Introduction to the OLAP Java API

This chapter introduces the Oracle OLAP Java application programming interface (API). The chapter includes the following topics:

	
OLAP Java API Overview

	
Accessing Data Through the OLAP Java API

	
Sample Schema for OLAP Java API Examples

	
Tasks That an OLAP Java API Application Performs

OLAP Java API Overview

The Oracle OLAP Java API is an application programming interface that provides access to the online analytic processing (OLAP) technology in Oracle Database with the OLAP option. This topic lists operations that an OLAP Java API client application can perform, describes the classes in the OLAP Java API, describes the objects in a dimensional data model, and discusses organizing data for online analytical processing.

For a description of the advantages of OLAP technology, see Oracle OLAP User's Guide. That document describes the capabilities that Oracle OLAP provides for the analysis of multidimensional data by business intelligence and advanced analytical applications. It describes in depth the dimensional data model, and it discusses the database administration and management tasks related to Oracle OLAP.

What the OLAP Java API Can Do

Using the OLAP Java API, your can develop client applications that do the following operations.

	
Establish one or more user sessions in a JDBC connection to an Oracle Database instance. Multiple user sessions can share the same connection and the same cache of metadata objects.

	
Manage OLAP transactions with the database.

	
Implement a dimensional data model using OLAP metadata objects.

	
Create and maintain analytic workspaces.

	
Create logical metadata objects and map them to relational sources.

	
Deploy the metadata objects as an analytic workspace or as relational tables and views and commit the objects to the database.

	
Explore the metadata to discover the data that is available for viewing or for analysis.

	
Construct analytical queries of the multidimensional data. Enable end users to create queries that specify and manipulate the data according to the needs of the user (for example, selecting, aggregating, and calculating data).

	
Modify queries, rather than totally redefine them, as application users refine their analyses.

	
Retrieve query results that are structured for display in a multidimensional format.

For more information on some of these operations, see "Tasks That an OLAP Java API Application Performs".

Describing the Classes in the OLAP Java API

The OLAP Java API has classes that represent the following types of objects.

	
User sessions

	
Transactions

	
Metadata objects

	
Build items, processes, specifications, and commands

	
Queries

	
Cursors that retrieve the data of a query

	
Expressions that specify data objects, such as a column in a relational table or view, or that specify a function or command that operates on data

Table 1-1 lists packages that contain the majority of the OLAP Java API classes. These packages are under the oracle.olapi package. The table contains brief descriptions of the package contents.

Table 1-1 Packages of the OLAP Java API under oracle.olapi

	Package	Description
	
data.cursor

	
Contains classes that represent cursor managers and cursors that retrieve the data specified by a Source object. For information on Cursor objects, see Chapter 8, "Understanding Cursor Classes and Concepts" and Chapter 9, "Retrieving Query Results".

	
data.source

	
Contains classes that represent data sources and cursor specifications. You use Source objects to create queries of the data store. With the Template class you can incrementally build a Source object that represents a query that you can dynamically modify. For information on Source objects, see Chapter 5, "Understanding Source Objects" and Chapter 6, "Making Queries Using Source Methods". For information on Template objects, see Chapter 10, "Creating Dynamic Queries".

	
metadata

metadata.deployment

metadata.mapping

metadata.mdm

	
Contains classes that represent metadata objects, classes that map the metadata objects to relational data sources, and classes that deploy the metadata objects in an analytic workspace or in relational database structures. For a description of these packages, see Chapter 2, "Understanding OLAP Java API Metadata". For information on using the classes in these packages, see Chapter 3, "Discovering Metadata" and Chapter 4, "Creating Metadata and Analytic Workspaces".

	
resource

	
Contains classes that support the internationalization of messages for Exception classes.

	
session

	
Contains a class that represents a session in a connection to an Oracle database.

	
syntax

	
Contains classes that represent the items and commands that specify how Oracle OLAP builds analytic workspace objects and classes that implement a syntax for creating SQL-like expressions. You use Expression objects in mapping metadata objects to relational data sources such as columns in a table or a view. You also use Expression objects to specify calculations and analytical operations for some metadata objects.

	
transaction

	
Contains classes that represent transactions with Oracle OLAP in an Oracle Database instance. You use Transaction objects to commit changes to the database. For information on Transaction objects, see Chapter 7, "Using a TransactionProvider".

The OLAP Java API also has packages organized under the oracle.express package. These packages date from the earliest versions of the API. The classes that remain in these packages are mostly Exception classes for exceptions that occur during interactions between Oracle OLAP and a client application.

For information on obtaining the OLAP Java API software and on the requirements for using it to develop applications, see Appendix A, "Setting Up the Development Environment."

Describing the Dimensional Data Model

Data warehousing and OLAP applications are based on a multidimensional view of data. This view is implemented in a dimensional data model that includes the following dimensional objects. For more detailed information about these concepts, see Oracle OLAP User's Guide.

	Cubes
	
Cubes are containers for measures that have the same set of dimensions. A cube usually corresponds to a single relational fact table or view. The measures of a cube contain facts and the dimensions give shape to the fact data. Typically, the dimensions form the edges of the cube and the measure data is the body of the cube. For example, you could organize data on product units sold into a cube whose edges contain values for members from time, product, customer, and channel dimensions and whose body contains values from a measure of the quantity of units sold and a measure of sales amounts.

The OLAP concept of a cube edge is not represented by a metadata object in the OLAP Java API, but edges are often incorporated into the design of applications that use the OLAP Java API. Each edge contains values of members from one or more dimensions. Although there is no limit to the number of edges on a cube, data is often organized for display purposes along three edges, which are referred to as the row edge, column edge, and page edge.

	Measures
	
Measures contain fact data in a cube. The measure values are organized and identified by dimensions. Measures are usually multidimensional. Each measure value is identified by a unique set of dimension members. This set of dimension members is called a tuple.

	Dimensions
	
Dimensions contain lists of unique values that identify and categorize data in a measure. Commonly-used dimensions are customers, products, and times. Typically, a dimension has one or more hierarchies that organize the dimension members into parent-child relationships.

By specifying dimension members, measures, and calculations to perform on the data, end users formulate business questions and get answers to their queries. For example, using a time dimension that categorizes data by month, a product dimension that categorizes data by unit item, and a measure that contains data for the quantities of product units sold by month, you can formulate a query that asks if sales of a product unit were higher in January or in June.

	Hierarchies
	
Hierarchies are components of a dimension that organize dimension members into parent-child relationships. Typically, in the user interface of a client application, an end user can expand or collapse a hierarchy by drilling down or up among the parents and children. The measure values for the parent dimension members are aggregations of the values of the children.

A dimension can have more than one hierarchy. For example, a time dimension could have a calendar year hierarchy and a fiscal year hierarchy. A hierarchy can be level-based or value-based.

In a level-based hierarchy, a parent must be in a higher level than the children of that parent. In a cube, the measure values for the parents are typically aggregated from the values of the children. For example, a time dimension might have levels for year, quarter, and month. The month level contains the base data, which is the most detailed data. The measure value for a quarter is an aggregation of the values of the months that are the children of the quarter and the measure value for a year is the aggregation of the quarters that are children of the year. Typically each level is mapped to a different column in the relational dimension table.

In a value-based hierarchy, the parent and the child dimension members typically come from the same column in the relational table. Another column identifies the parent of a member. For example, a value hierarchy could contain all employees of a company and identify the manager for each employee that has one. All employees, including managers, would come from the same column. Another column would contain the managers of the employees.

	Levels
	
Levels are components of a level-based hierarchy. A level can be associated with more than one hierarchy. A dimension member can belong to only one level.

A level typically corresponds to a column in a dimension table or view. The base level is the primary key.

	Attributes
	
Attributes contain information related to the members of a dimension. An end user can use an attribute to select data. For example, an end user might select a set of products by using an attribute that has a descriptive name of each product. An attribute is contained by a dimension.

	Queries
	
A query is a specification for a particular set of data. The term query in the OLAP Java API refers to a Source object that specifies a set of data and can include aggregations, calculations, or other operations to perform using the data. The data and the operations on it define the result set of the query. In this documentation, the general term query refers to a Source object.

The API has a Query class in the oracle.olapi.syntax package. A Query represents a multirow, multicolumn result set that is similar to a relational table, a SQL SELECT statement, or an OLAP function. You use a Query object in mapping a dimension or measure to a relational table or view.

Implementing the Dimensional Data Model

In the OLAP Java API, the dimensional data objects are represented by Multidimensional Model (MDM) classes. These classes are in the oracle.olapi.metadata.mdm package. Related classes are in the oracle.olapi.metadata package and the other packages under it. For detailed information about those classes, see Chapter 2, "Understanding OLAP Java API Metadata".

Organizing the Data for OLAP

The OLAP Java API makes it possible for Java applications (including applets) to access data that resides in an Oracle data warehouse. A data warehouse is a relational database that is designed for query and analysis, rather than for transaction processing. Warehouse data often conforms to a star schema, which is a dimensional data model for a relational database. A star schema consists of one or more fact tables and one or more dimension tables. The fact tables have columns that contain foreign keys to the dimension tables. Typically, a data warehouse is created from a transaction processing database by an extraction transformation transport (ETT) tool.

For the data in a data warehouse to be accessible to an OLAP Java API application, a database administrator must ensure that the data warehouse is configured according to an organization that is supported by Oracle OLAP. The star schema is one such organization, but not the only one. See Oracle OLAP User's Guide for information about supported data warehouse configurations.

Once the data is organized in the warehouse, you can use an OLAP Java API application to design an OLAP dimensional data model of cubes, measures, dimensions, and so on, and to create the logical OLAP metadata objects that implement the model. You map the metadata objects to data in the warehouse and build an analytic workspace. Building the analytic workspace populates the OLAP views and other storage structures with the data that the OLAP metadata objects represent.

You can also use Analytic Workspace Manager to do the same tasks. See Oracle OLAP User's Guide for information about creating an analytic workspace with Analytic Workspace Manager.

An OLAP Java API application can get the OLAP metadata objects created either by Analytic Workspace Manager or through the OLAP Java API. It can use the metadata objects to create queries that operate on the data in the warehouse.

The collection of warehouse data in an analytic workspace is the data store to which the OLAP Java API gives access. Of course, the scope of the data that a user has access to is limited by the privileges granted to the user by the database administrator.

In addition to ensuring that data and metadata have been prepared appropriately, you must ensure that application users can make a JDBC connection to the data store and that users have database privileges that give them access to the data. For information about specifying privileges, see Oracle OLAP User's Guide. For information about establishing a connection, see Chapter 3, "Discovering Metadata".

Accessing Data Through the OLAP Java API

Oracle OLAP metadata objects organize and describe the data that is available to a client application. The metadata objects contain other information, as well, such as the data type of the data. However, you cannot retrieve data directly from a metadata object. To specify the data that you want, you must create a query. In specifying the data, you usually must specify one or more dimension member values. To retrieve the specified data, you create a Cursor. This topic briefly describes those actions.

Another way that you can query the data contained in OLAP metadata objects is through SQL queries of the views that Oracle OLAP creates for the metadata objects. For information about querying these views, see "Using OLAP Views" in Chapter 2, "Understanding OLAP Java API Metadata".

Creating Queries

Queries are represented by oracle.olapi.data.source.Source objects. You get a Source from a metadata object and use that Source object in specifying the data that you want to get. Source classes have methods for selecting and performing operations on the data. You can use the methods to manipulate data in any way that the user requires. For information about Source objects, see Chapter 5, "Understanding Source Objects" and Chapter 6, "Making Queries Using Source Methods".

Specifying Dimension Members

The members of an Oracle OLAP dimension are usually organized into one or more hierarchies. Some hierarchies have parent-child relationships based on levels and some have those relationships based on values. The value of each dimension member must be unique.

The OLAP Java API uses a three-part format to uniquely identify a dimension member. The format contains the hierarchy, the level, and the value of the dimension member, and thereby identifies a unique value in the dimension. The first part of a unique value is the name of the hierarchy object, the second part is the name of the level object, and the third part is the value of the member in the level. The parts of the unique value are separated by a value separation string, which by default is double colons (::). The following is an example of a unique member value of a level named YEAR in a hierarchy named CALENDAR_YEAR in a dimension named TIME_AWJ.

????CALENDAR_YEAR::YEAR::CY2001

The third part of a unique value is the local value. The local value in the preceding example identifies the calendar year 2001.

Creating Cursors

To retrieve the data specified by a Source, you create an oracle.olapi.data.cursor.Cursor for that Source. You then use this Cursor to request and retrieve the data from the data store. You can specify the amount of data that the Cursor retrieves in each fetch operation (for example, enough to fill a 40-cell table in the user interface). Oracle OLAP then efficiently manages the timing, sizing, and caching of the data blocks that it retrieves for your application, so that you do not need to do so. For information about Cursor objects, see Chapter 8, "Understanding Cursor Classes and Concepts" and Chapter 9, "Retrieving Query Results".

Sample Schema for OLAP Java API Examples

The examples of OLAP Java API code in this documentation are excerpts from a set of example programs that are available on the Oracle Technology Network (OTN) website. One example, CreateAndBuildAW.java, has methods that create and build an analytic workspace. Another example, SpecifyAWValues, calls the methods of CreateAndBuildAW.java and specifies values, such as names for the metadata objects and names of columns of relational tables for mapping the metadata objects to data sources. The analytic workspace produced by these examples is named GLOBAL_AWJ. Other examples query that analytic workspace. The metadata objects in the analytic workspace are mapped to columns in relational tables that are in the Global schema.

From the OTN website, you can download a file that contains SQL scripts that create the Global schema and a file that contains the example programs. The OTN website is at http://www.oracle.com/technetwork/database/options/olap/index.html.

To get either file, select Sample Code and Schemas in the Download section of the web page. To get the sample schema, select Global Schema 11g. To get the example programs, select Example Programs for Documentation and then select Download the Example Programs for 11g Release 2 (11.2) to download the compressed file that contains the examples.

The example programs are in a package structure that you can easily add to your development environment. The classes include a base class that the example program classes extend, and utility classes that they use. The base class is BaseExample11g.java. The utility classes include Context11g.java and CursorPrintWriter.java. The Context11g.java class has methods that create a connection to an Oracle Database instance, that store metadata objects, that return the stored metadata objects, and that create Cursor objects. The CursorPrintWriter.java class is a PrintWriter that has methods that display the contents of Cursor objects.

The OLAP metadata objects are created and built by the CreateAndBuildAW.java and the SpecifyAWValues programs. Those metadata objects include the following:

	
GLOBAL_AWJ, which is the analytic workspace that contains the other objects.

	
PRODUCT_AWJ, which is a dimension for products. It has one hierarchy named PRODUCT_PRIMARY. The lowest level of the hierarchy has product item identifiers and the higher levels have product family, class, and total products identifiers.

	
CUSTOMER_AWJ, which is a dimension for customers. It has two hierarchies named SHIPMENTS and MARKETS. The lowest level of each hierarchy has customer identifiers and higher levels have warehouse, region, and total customers, and account, market segment, and total market identifiers, respectively.

	
TIME_AWJ, which is a dimension for time values. It has a hierarchy named CALENDAR_YEAR. The lowest level has month identifiers, and the other levels have quarter and year identifiers.

	
CHANNEL_AWJ, which is a dimension for sales channels. It has one hierarchy named CHANNEL_PRIMARY. The lowest level has sales channel identifiers and the higher level has the total channel identifier.

	
UNITS_CUBE_AWJ, which is a cube that contains the measures COST, SALES, and UNITS. COST has values for the costs of product units. SALES has the dollar amounts for the sales of product units. UNITS has values for the quantities of product units sold. The cube is dimensioned by all four dimensions. The aggregation method for the cube is SUM, in which each the value for each parent is the sum of the values of the children of the parent.

	
PRICE_CUBE_AWJ, which is a cube that contains the measures UNIT_COST and UNIT_PRICE. UNIT_COST has the costs of the units. UNIT_PRICE has the prices of the units. The cube is dimensioned by the PRODUCT_AWJ and TIME_AWJ dimensions. The aggregation method for the cube is AVG, in which the value for each parent is the average of the values of the children of the parent.

For an example of a program that discovers the OLAP metadata for the analytic workspace, see Chapter 3, "Discovering Metadata".

Tasks That an OLAP Java API Application Performs

A client application that uses the OLAP Java API typically performs the following tasks:

	
Connects to the data store and creates a DataProvider and a UserSession.

	
Creates or discovers metadata objects.

	
Deploys, maps, and builds metadata objects, as needed.

	
Specifies queries that select and manipulate data.

	
Retrieves query results.

The rest of this topic briefly describes these tasks, and the rest of this guide provides detailed information about how to accomplish them.

	Task 1: Connect to the Data Store and Create a DataProvider and UserSession
	
You connect to the data store by identifying some information about the target Oracle Database instance and specifying this information in a JDBC connection method. Having established a connection, you create a DataProvider and use it and the connection to create a UserSession. For more information about connecting and creating a DataProvider and UserSession, see "Connecting to Oracle OLAP" in Chapter 3.

	Task 2: Create or Discover Metadata Objects
	
You use the DataProvider to get an MdmMetadataProvider. The MdmMetadataProvider gives access to all of the metadata objects in the data store. You next obtain the MdmRootSchema object by calling the getRootSchema method of the MdmMetdataProvider. The MdmRootSchema object contains all of the OLAP metadata objects in the database. From the MdmRootSchema, you get the MdmDatabaseSchema objects for the schemas that the current user has permission to access. An MdmDatabaseSchema represents a named Oracle Database user as returned by the SQL statement SELECT username FROM all_users.

From an MdmDatabaseSchema, you can discover the existing metadata objects that are owned by the schema or you can create new ones. Methods such as getMeasures and getDimensions get all of the measures or dimensions owned by the MdmDatabaseSchema. Methods such as findOrCreateAW and findOrCreateCube get an analytic workspace or cube, if it exists, or create one if it does not already exist.

From a top-level metadata object contained by the MdmDatabaseSchema, such as an analytic workspace, cube, or dimension, you can get the objects that it contains. For example, from an MdmPrimaryDimension, you can get the hierarchies, levels, and attributes that are associated with it. Having determined the metadata objects that are available to the user, you can present relevant lists of objects to the user for data selection and manipulation.

For a description of the metadata objects, see Chapter 2, "Understanding OLAP Java API Metadata". For information about how you can discover the available metadata, see Chapter 3, "Discovering Metadata".

	Task 3: Deploy, Map, and Build Objects
	
If you create a new MdmCube or MdmPrimaryDimension, you must deploy it as an analytic workspace object or as a relational OLAP (Rolap) object. To deploy a cube, you call an MdmCube method such as findOrCreateAWCubeOrganization. To deploy a dimension, you call an MdmPrimaryDimension method such as findOrCreateAWPrimaryDimensionOrganization.

If you create a new metadata object that represents data, you must specify an Expression that maps the metadata object to a relational source table or view, or that Oracle OLAP uses to generate the data. For objects that are contained by an analytic workspace, you can build the metadata objects after mapping them. For information on creating metadata, deploying, mapping, and building metadata objects, see Chapter 4, "Creating Metadata and Analytic Workspaces".

	Task 4: Select and Calculate Data Through Queries
	
An OLAP Java API application can construct queries against the data store. A typical application user interface provides ways for the user to select data and to specify the operations to perform using the data. Then, the data manipulation code translates these instructions into queries against the data store. The queries can be as simple as a selection of dimension members, or they can be complex, including several aggregations and calculations involving the measure values that are specified by selections of dimension members.

The OLAP Java API object that represents a query is a Source. Metadata objects that represent data are extensions of the MdmSource class. From an MdmSource, such as an MdmMeasure or an MdmPrimaryDimension, you can get a Source object. With the methods of a Source object, you can produce other Source objects that specify a selection of the elements of the Source, or that specify calculations or other operations to perform on the values of a Source.

If you are implementing a simple user interface, then you might use only the methods of a Source object to select and manipulate the data that users specify in the interface. However, if you want to offer your users multistep selection procedures and the ability to modify queries or undo individual steps in their selections, then you should design and implement Template classes. Within the code for each Template, you use the methods of the Source classes, but the Template classes themselves allow you to dynamically modify and refine even the most complex query. In addition, you can write general-purpose Template classes and reuse them in various parts of your application.

For information about working with Source objects, see Chapter 5, "Understanding Source Objects". For information about working with Template objects, see Chapter 10, "Creating Dynamic Queries".

	Task 5: Retrieve Query Results
	
When users of an OLAP Java API application are selecting, calculating, combining, and generally manipulating data, they also want to see the results of their work. This means that the application must retrieve the result sets of queries from the data store and display the data in multidimensional form. To retrieve a result set for a query through the OLAP Java API, you create a Cursor for the Source that specifies the query.

You can also get the SQL that Oracle OLAP generates for a query. To do so, you create a SQLCursorManager for the Source instead of creating a Cursor. The generateSQL method of the SQLCursorManager returns the SQL specified by the Source. You can then retrieve the data by means outside of the OLAP Java API.

Because the OLAP Java API was designed to deal with a multidimensional view of data, a Source can have a multidimensional result set. For example, a Source can represent an MdmMeasure that is dimensioned by four MdmPrimaryDimension objects. Each MdmPrimaryDimension has an associated Source. You can create a query by joining the Source objects for the dimensions to the Source for the measure. The resulting query has the Source for the measure as the base and it has the Source objects for the dimensions as outputs.

A Cursor for a query Source has the same structure as the Source. For example, the Cursor for the Source just mentioned has base values that are the measure data. The Cursor also has four outputs. The values of the outputs are those of the Source objects for the dimensions.

To retrieve all of the items of data through a Cursor, you can loop through the multidimensional Cursor structure. This design is well adapted to the requirements of standard user interface objects for painting the computer screen. It is especially well adapted to the display of data in multidimensional format.

For more information about using Source objects to specify a query, see Chapter 5, "Understanding Source Objects". For more information about using Cursor objects to retrieve data, see Chapter 8, "Understanding Cursor Classes and Concepts". For more information about the SQLCursorManager class, see Oracle OLAP Java API Reference.

2 Understanding OLAP Java API Metadata

This chapter describes the classes in the Oracle OLAP Java API that represent OLAP dimensional and relational metadata objects. It also describes the classes that provide access to the metadata objects and to data sources, or that contain information about the metadata objects. This chapter includes the following topics:

	
Overview of OLAP Java API Metadata Classes

	
Identifying, Describing, and Classifying Metadata Objects

	
Providing Metadata Objects

	
Providing Access to Data Sources

For more information on getting existing metadata objects, see Chapter 3, "Discovering Metadata". For more information on creating metadata objects, see Chapter 4, "Creating Metadata and Analytic Workspaces".

Overview of OLAP Java API Metadata Classes

Chapter 1 describes the OLAP dimensional data model and briefly mentions some of the OLAP Java API classes that implement that model. Those classes are in the oracle.olapi.metadata packages. Using those classes, you can do the following tasks.

	
Gain access to the available metadata objects

	
Create new metadata objects

	
Deploy metadata objects in an analytic workspace or as relational objects

	
Map metadata objects to data sources

	
Export metadata objects to XML or import them from XML

	
Create Source objects to query the data

Figure 2-1 shows the oracle.olapi.metadata packages.

Figure 2-1 The oracle.olapi.metadata Packages

[image: Description of Figure 2-1 follows]

The packages are the following:

	
oracle.olapi.metadata, which has interfaces and abstract classes that specify the most basic characteristics of metadata objects and metadata providers.

	
oracle.olapi.metadata.mdm, which has classes that implement the MDM (multidimensional model) metadata model. This package has classes that represent the metadata objects, classes that provide access to those objects, and classes that contain descriptive information about the objects.

	
oracle.olapi.metadata.deployment, which has classes that specify the organization of a metadata object as an analytic workspace object or as a relational object.

	
oracle.olapi.metadata.mapping, which has classes that map a metadata object to relational data sources.

Some of the classes in the oracle.olapi.metadata.mdm package directly correspond to OLAP dimensional metadata objects. Table 2-1 presents some of these correspondences.

Table 2-1 Corresponding Dimensional and MDM Objects

	Dimensional Metadata Objects	MDM Metadata Objects
	
Cube

	
MdmCube

	
Measure

	
MdmBaseMeasure

	
Calculated measure

	
MdmDerivedMeasure

	
Measure folder

	
MdmOrganizationalSchema

	
Dimension

	
MdmTimeDimension and MdmStandardDimension

	
Hierarchy

	
MdmLevelHierarchy and MdmValueHierarchy

	
Level

	
MdmDimensionLevel and MdmHierarchyLevel

	
Attribute

	
MdmBaseAttribute and MdmDerivedAttribute

Other classes in the package correspond to relational objects. Table 2-2 shows those correspondences.

Table 2-2 Corresponding Relational and MDM Objects

	Relational Objects	MDM Metadata Objects
	
Schema

	
MdmDatabaseSchema

	
Table

	
MdmTable

	
Table column

	
MdmColumn

Identifying, Describing, and Classifying Metadata Objects

Most OLAP Java API metadata objects have a unique identifier (ID), a name, and an owner or a containing object. You can also associate descriptions and classifications to most metadata objects.

Most metadata classes extend the abstract oracle.olapi.metadata.BaseMetadataObject class. A BaseMetadataObject can have a name and an ID. You can get most metadata objects by name. The ID is used internally by Oracle OLAP, but an application can also use the ID to get some metadata objects.

A BaseMetadataObject also has an owner, which is returned by the getOwner method. For most metadata objects, the owner is an MdmDatabaseSchema. For the MdmRootSchema and MdmMeasureDimension objects, the owner is the root schema. For an MdmViewColumn, which is not a subclass of BaseMetadataObject, the getOwner method returns the owning implementation of the MdmViewColumnOwner interface, such as an MdmPrimaryDimension, an MdmBaseAttribute, or an MdmMeasure. An MdmViewColumn represents a column in an OLAP view. For information on OLAP views, see "Using OLAP Views".

Some BaseMetadataObject objects are contained by the metadata object that created them. For example, an MdmBaseMeasure is contained by the MdmCube that created it. You can get the container for a metadata object by calling the getContainedByObject method.

The MdmObject class, which is an abstract subclass of BaseMetadataObject, adds associations with descriptive objects and classifications. Typically, a descriptive object contains a name or descriptive text that you associate with the metadata object itself. Applications often use a descriptive object for display purposes in a user interface. A classification is a string value that your application assigns to the metadata object. Your application handles the classification for whatever purpose you want.

Identifying Objects

You can identify a BaseMetadataObject object by name and by ID. Namespaces identify the type and the format of legacy metadata objects.

Getting and Setting Names

Most metadata objects have a name that you can get by calling the getName method of the object. For some objects, you can assign a name when you create the object. For example, an oracle.olapi.metadata.deployment.AW object represents an analytic workspace. When you create an AW by calling the findOrCreateAW method of an MdmDatabaseSchema, you use the publicName parameter of the method to specify a name for the AW object that the method returns.

For some objects, you can use the setName method to change the name of an existing object. For example, you can change the name of an MdmStandardDimension by calling the setName method of the dimension object. The new name does not take effect until you commit the root Transaction of the session. After you call setName, but before you commit the root Transaction, the getNewName method returns the new name while the getName method returns the existing name. For more information on getting objects by name, see "About Creating a Metadata Object or a Query in a Transaction"

You can get some objects by name from an MdmDatabaseSchema. For more information on getting objects by name, see "Representing Schemas".

For use in displaying names or descriptions in a user interface, or for any purpose you want, you can associate any number of names and descriptions with an MdmObject by using the MdmDescription class. For information on using that class, see "Using Descriptions".

Describing Unique Identifiers

Most metadata objects have a unique identifier (ID). The identifier has one of the following forms.

	
objectName

	
ownerName.objectName

	
ownerName.containerName.objectName

For example, for the MdmDatabaseSchema that represents the schema for the user GLOBAL, the identifier returned by the getID method is GLOBAL. For an MdmPrimaryDimension named PRODUCT_AWJ, the getID method returns GLOBAL.PRODUCT_AWJ and for an MdmLevelHierarchy of that dimension named PRODUCT_PRIMARY, the method returns GLOBAL.PRODUCT_AWJ.PRODUCT_PRIMARY.

The ID of a metadata object is persistent. However, if the name or the owner of a metadata object changes, then the ID changes as well. For more information on getting objects by ID, see "Getting Metadata Objects by ID".

For a legacy 10g metadata object, the first part of the identifier is a namespace. The namespace is followed by the namespace delimiter, which is two periods. An example of the identifier of a 10g dimension is AWXML_DIMENSION..GLOBAL.PRODUCT_AW.

Supporting Legacy Metadata Objects

In Oracle Database, Release 11g, Oracle Database, Release 11g Oracle OLAP supports legacy 10g OLAP Java API applications. Namespaces identify 10g metadata objects and enable them to exist in the same session as 11g objects.

Supporting Legacy Applications

To support legacy applications that use OLAP metadata objects that were created in 10g, the oracle.olapi.data.source.DataProvider class has a metadata reader mode. By default, the metadata reader recognizes Oracle OLAP 10g and 11g metadata objects. You can specify a metadata reader mode with a property of a java.util.Properties object or with a string in the proper XML format. For information on the modes and how to specify one, see the constructor methods of the DataProvider class in the Oracle OLAP Java API Reference documentation.

Describing Namespaces

In Oracle Database, Release 10g, an Oracle OLAP cube, dimension, or measure folder could have the same name as a relational table or view. In Release 11g, top-level OLAP metadata objects are stored in the Oracle Database data dictionary, so they cannot have the same name as another relational object. A namespace designation allows a legacy OLAP Java API 10g metadata object to exist in the same session as 11g metadata objects. Such legacy metadata objects were created by using classes in the oracle.olapi.AWXML package of the Oracle OLAP Analytic Workspace Java API or by using CWM PL/SQL packages. For 10g and 11g objects to exist in the same session, the metadata reader mode of the DataProvider must be set to ALL. The ALL mode is the default metadata reader mode. For more information on metadata reader mode settings, see the DataProvider class documentation in Oracle OLAP Java API Reference.

The metadata objects for a 10g cube, dimension, and measure folder are represented in 11g by the MdmCube, MdmPrimaryDimension, and MdmSchema classes. An instance of one of those classes can have a namespace associated with it, which is returned by the getNamespace method. For an 11g object, the namespace is null.

The 11g XML definition of a 10g object has a Namespace attribute. For information on exporting and importing XML definitions of metadata objects, see "Exporting and Importing Metadata as XML Templates".

The namespace of a legacy metadata object identifies the metadata format and the type of object. It begins with either AWXML_ or CWM_ and then has the type of object, such as CUBE or DIMENSION. For example, a dimension created by using the Oracle OLAP Analytic Workspace Java API in Oracle Database 10g, Release 2 (10.2), would have the namespace AWXML_DIMENSION in 11g.

The valid namespaces are represented by static constant fields of the MdmMetadataProvider class. The getValidNamespaces method of that class returns a list of the valid namespaces, including the default namespace. You cannot create a new namespace.

You can use the constant fields to get a legacy metadata object from an MdmDatabaseSchema. For example, the following code gets the PRODUCT_AW dimension. In the code, mdmDBSchema is the MdmDatabaseSchema for the GLOBAL user.

MdmStandardDimension mdmProdAWDim =
 mdmDBSchema.findOrCreateStandardDimension("PRODUCT_AW",
 MdmMetadataProvider.AWXML_DIMENSION_NAMESPACE);

In the ALL metadata reader mode, you get an existing 10g metadata object but you cannot create a new one. If the legacy metadata object does not exist, the method returns an 11g object that has the specified name.

Using Descriptions

With an MdmDescription object, you can associate descriptive information with an MdmObject object. An MdmDescriptionType object represents the type of description of an MdmDescription. You can use MdmDescription objects to display names, descriptions, or other information for a metadata object in a user interface. MdmDescription objects are created, assigned, and handled entirely by your application.

	
Note:

A descriptive name that you associate with an MdmObject through an MdmDescription is not the object name that is returned by the MdmObject.getName method. The object name is used by Oracle OLAP to identify the object internally. A descriptive name is used only by an application.

The OLAP Java API defines some types of descriptions. The MdmDescriptionType class has static methods that provide the following description types.

	Description Type
	Name	Plural name	Description
	Short name	Short plural name	Short description
	Long name	Long plural name	Long description

You get one of these defined description types by calling a method of MdmDescriptionType. For example, the following code gets the description type object for a long name and a long description.

MdmDescriptionType mdmLongNameDescrType =
 MdmDescriptionType.getLongNameDescriptionType();
MdmDescriptionType mdmLongDescrDescrType =
 MdmDescriptionType.getLongDescriptionDescriptionType();

You can create a new type of description by using a constructor method of MdmDescriptionType. You can get the type of an MdmDescriptionType object with the getDescriptiveType method. Figure 2-2 shows the methods of MdmDescriptionType.

Some of the defined description types have an associated default description type. You change a default description type or assign a default description type for a new or existing MdmDescriptionType by using the MdmDescriptionType(java.lang.String type, MdmDescriptionType defaultType) constructor method. You can get the default type of an MdmDescriptionType object with the getDescriptiveTypeDefault method.

To associate an MdmDescription object with an MdmObject, use the findOrCreateDescription or a setDescription method of the MdmObject. The findOrCreateDescription method returns an MdmDescription object. To specify a value for the description, use the setValue method of MdmDescription.

Example 2-1 shows both ways of associating an MdmDescription with an MdmObject. In the example, mdmProdDim is an MdmStandardDimension object.

Example 2-1 Associating a Description with an MdmObject

MdmDescription mdmShortNameDescr =
 mdmProdDim.findOrCreateDescription(
 MdmDescriptionType.getShortNameDescriptionType(), "AMERICAN");
mdmShortNameDescr.setValue("Product");

mdmProdDim.setDescription(
 MdmDescriptionType.getLongNameDescriptionType(), "Product Dimension");

Figure 2-2 shows the methods of MdmObject that use MdmDescription and MdmDescriptionType objects. It also shows the MdmDescription and MdmDescriptionType classes and their methods, and the associations between the classes. An MdmObject can have from zero to many MdmDescription objects. An MdmDescription is associated with one MdmObject and one MdmDescriptionType. An MdmDescriptionType can be associated with one or more MdmDescription objects.

Figure 2-2 MdmObject and MdmDescription Associations

[image: Description of Figure 2-2 follows]

Versions of the OLAP Java API before 11g did not have the MdmDescription and MdmDescriptionType classes. In those versions, the MdmObject class had only the following methods for getting and setting descriptions.

Figure 2-3 Methods for Getting and Setting Descriptions Before 11g

[image: Description of Figure 2-3 follows]

For backward compatibility, the OLAP Java API still supports these methods, but implements them internally using MdmDescription and MdmDescriptionType objects.

Using Classifications

A classification is a property of an MdmObject. You assign a classification to an object and then use the classification as you please. For example, you could add a classification with the value of "HIDDEN" to indicate that an application should not display the object in the user interface. You can assign a classification to an MdmObject by using the addObjectClassification method of the object. You can get the classifications with the getObjectClassifications method and remove one with the removeObjectClassification method.

Providing Metadata Objects

Access to Oracle OLAP Java API metadata objects is initially provided by an MdmMetadataProvider and by MdmSchema objects. The MdmMetadataProvider also has the ability to import or export an XML representation of a metadata object.

Describing Metadata Providers

Before you can get or create OLAP Java API metadata objects, you must first create an MdmMetadataProvider. For information on creating an MdmMetadataProvider, see "Creating an MdmMetadataProvider".

With the getRootSchema method of the MdmMetadataProvider, you can get the root MdmSchema object, which is an instance of the MdmRootSchema class. The root schema is a container for MdmDatabaseSchema objects.

MdmDatabaseSchema objects are owners of top-level metadata objects such as AW, MdmCube, and MdmPrimaryDimension objects. The top-level objects are first-class data objects and are represented in the Oracle Database data dictionary. Because they are in the data dictionary, these OLAP data objects are available to SQL queries. You create top-level metadata objects by using findOrCreate methods of an MdmDatabaseSchema.

The top-level objects are the containers of objects such as MdmMeasure, MdmHierarchy, and MdmAttribute objects. You create the contained objects by using methods of the top-level objects.

For more information on MdmSchema objects, see "Representing Schemas". For information on top-level metadata objects, see "Providing Access to Data Sources".

You can also get an existing metadata object by calling the getMetadataObject or getMetadataObjects method of the MdmMetadataProvider and providing the ID of the metadata object.

Getting Metadata Objects by ID

Usually, you get or create metadata objects by calling findOrCreate methods on the owning object. For example, you can get or create an MdmCube by calling the findOrCreateCube method of an MdmDatabaseSchema object. However, you can also get an existing metadata object from an MdmMetadataProvider by specifying the ID of the object. The MdmMetadataProvider.getMetadataObject method takes a String that is the ID of an object and returns the object. The getMetadataObjects method takes a List of IDs and returns a List of objects.

You can store the ID of a metadata object from one session and then get the object by that ID in another session. Of course, getting an object by a stored ID assumes that the object still exists and that the ID of the object has not changed. For some metadata objects, you can change the name or the owner. If the name or owner of the object changes, then the ID of the object changes.

Exporting and Importing Metadata as XML Templates

The MdmMetadataProvider class has many methods for exporting and importing metadata objects to and from XML definitions of those objects. The XML definition is a template from which Oracle OLAP can create the metadata objects defined.

You can use XML templates to transport metadata objects between Oracle Database instances. You can exchange XML templates between Analytic Workspace Manager and an OLAP Java API application; that is, in Analytic Workspace Manager you can import a template that you created with an MdmMetadataProvider export XML method, and you can use an importXML method to import an XML template created by Analytic Workspace Manager.

When exporting XML, you can rename objects or specify bind variables for the values of XML attributes. You can also supply an implementation of the XMLWriterCallback interface to manage some aspects of the export process. When importing XML, you can specify an MdmDatabaseSchema to own the imported objects, bind values to replace the bind variables in the exported XML, and an implementation of the XMLParserCallback interface to manage some aspects of the import process.

Exporting XML Templates

For exporting metadata objects to XML templates, MdmMetadataProvider has many signatures of the exportFullXML and exportIncrementalXML methods. The methods export a template to a java.lang.String or to a java.io.Writer.

You can use an XML template produced by these methods to import metadata objects through the importXML methods of MdmMetadataProvider. You can also use the XML template to import metadata objects in Analytic Workspace Manager.

An exportFullXML method exports the complete XML definitions for the specified objects or for the objects that you have created or modified since a specified oracle.olapi.transaction.Transaction. For an example of using the exportFullXML method, see Example 4-10, "Exporting to an XML Template".

An exportIncrementalXML method exports only the XML attributes that have changed for a metadata object since a specified Transaction. If you specify a List of objects, then the exported templates contain the XML attributes that have changed for the objects that are in the list. The exported incremental XML includes the type and name of the objects in the ownership and containment hierarchy of the changed object.

The exportFullXML and exportIncrementalXML methods take various combinations of the following parameters.

	
A List of the objects to export or a Transaction.

	
A Writer to which Oracle OLAP exports the XML. If you do not specify a Writer, then the method returns a java.lang.String that contains the XML.

	
A java.util.Map that has metadata object references as keys and that has, as the objects for the keys, String values that contain new names for the referenced objects. With this Map, you can rename an object that you export. You can specify null for the parameter if you do not want to rename any objects.

If you specify a Map for this renameMap parameter, then the Oracle OLAP XML generator renames a referenced object during the export. You can copy the definition of an existing object this way, by renaming an object during the export of an XML template and then importing the template.

	
A boolean that specifies whether or not to include the name of the owning object in the exported XML.

	
An optional Map that has metadata object references as keys and that has, as the objects for the keys, String values that function like SQL bind variables. For more information on the bind variables in this parameter, see "Describing Bind Variables in XML Templates".

	
An optional implementation of the oracle.olapi.metadata.XMLWriterCallback interface. With an XMLWriterCallback, you can specify whether or not to exclude an attribute or an owner name from the exported XML.

All metadata objects that share an ancestor are grouped together in the exported XML. For any object that is not a top-level object and whose top-level container is not in the List of the objects to export, the exported template contains an incremental definition to the object and a full definition below that. This supports the export of objects such as a calculated measure in a cube without having to export the entire cube template.

If an MdmDatabaseSchema is in the List of objects to export, then the exported template includes all objects within the database schema. If an oracle.olapi.metadata.deployment.AW object is in the List, then the exported template includes all of the objects that are contained by the AW. If the MdmRootSchema is in the list, it is ignored.

Importing XML Templates

For importing metadata objects as XML templates, MdmMetadataProvider has several signatures of the importXML method.

An importXML method imports XML definitions of objects and either creates new objects or modifies existing objects. The importXML method take various combinations of the following parameters.

	
A java.io.Reader for input of the XML or a String that contains the XML to import.

	
An MdmDatabaseSchema to contain the new or modified metadata objects.

	
A boolean, modifyIfExists, that indicates whether or not you want differences in the imported XML definition to modify an existing object of the same name.

	
An optional Map, bindValues, that contains bind variables as keys and, as the objects for the keys, String values to replace the bind variables. For more information on the bind values in this parameter, see "Describing Bind Variables in XML Templates".

	
An optional implementation of the oracle.olapi.metadata.XMLParserCallback interface.

If the value of the modifyIfExists parameter is true and if the imported XML contains a full definition for an object that already exists and the object definition is different from the XML, then the method merges the new or changed elements of the object definition with the existing definition of the object. If the value of modifyIfExists is false and if the XML contains a full definition for an object that already exists, then the importXML method throws an exception.

With the bindValues parameter, you can specify a Map that has key/object pairs that Oracle OLAP uses to replace bind variables when importing an XML template. A key in the Map is a bind variable to replace and the object paired to the key is the value with which to replace the bind variable. When you import a template, if you specify a Map that contains bind variables as keys, then Oracle OLAP replaces a bind variable in the imported XML with the value specified for the bind variable in the bindValues Map.

You can pass an implementation of the XMLParserCallback interface to an importXML method as the parserCallback parameter. With the XMLParserCallback, you can specify how Oracle OLAP handles an error that might occur when importing XML. The XML11_2_ParserCallback interface adds methods for renaming the imported object and for suppressing attributes of the imported object.

Describing Bind Variables in XML Templates

The exportFullXML and exportIncrementalXML methods have an optional bindVariables parameter. This parameter is a Map that has metadata objects as keys and String values as the objects for the keys. The String values function like SQL bind variables. During the export of the XML, the Oracle OLAP XML generator replaces the name of the referenced object with the bind variable.

If you provide a Map for the bindVariables parameter to an exportFullXML or exportIncrementalXML method, then the XML produced by the method begins with the following declaration.

<!DOCTYPE Metadata [
<!ENTITY % BIND_VALUES PUBLIC "OLAP BIND VALUES" "OLAP METADATA">
%BIND_VALUES;
]>

A value specified in the bindVariables map appears in the exported XML in the format "&BV;", where BV is the bind variable.

The bindValues parameter of an importXML method specifies values that Oracle OLAP uses to replace the bind variables when importing an XML template. When you import a template, if you specify a Map that contains bind variables as keys, then Oracle OLAP replaces a bind variable in the imported XML with the String specified as the object for the bind variable key in the Map.

If you provide a Map for the bindValues parameter, then the inXML string that you provide to the method must include the !DOCTYPE Metadata declaration and the bind variables in the XML to import must be in the "&BV;" format.

Representing Schemas

Schemas are represented by the MdmSchema class and the subclasses of it. An MdmSchema is owner of, or a container for, MdmCube, MdmDimension, and other MdmObject objects, including other MdmSchema objects. In the 10g and earlier versions of the OLAP Java API, the MdmSchema class had more than one role. The API had one root MdmSchema, an MdmSchema for each measure folder, and custom MdmSchema objects that an application could create.

The 11g OLAP Java API introduced subclasses of MdmSchema to separate and define the different roles. In 11g, MdmSchema remains a concrete class for compatibility with the earlier versions and for use in 10g metadata reader modes.

In 11g, an MdmSchema is an instance of one of the following subclasses of MdmSchema:

	
MdmRootSchema, which is a container for MdmDatabaseSchema objects and is supplied by the system.

	
MdmDatabaseSchema, which represents the relational schema for a database user and which creates and owns MdmCube, MdmDimension, and other MdmObject objects. MdmDatabaseSchema objects are supplied by the system.

	
MdmOrganizationalSchema, which you can use to organize measures and other MdmOrganizationalSchema objects.

This remainder of this topic describes the subclasses of MdmSchema.

Representing the Root Schema

The root schema is a container for database schema objects. This top-level schema is represented by the MdmRootSchema class. You get the MdmRootSchema with the getRootSchema method of the MdmMetadataProvider. From the MdmRootSchema you can get all of the MdmDatabaseSchema objects or you can get an individual MdmDatabaseSchema by name.

The MdmRootSchema class also contains all of the MdmCube, MdmMeasure, and MdmPrimaryDimension objects that are provided by the MdmMetadataProvider, and has methods for getting those objects. However, the List of objects returned by those methods contains only the cubes, measures, or dimensions that the user has permission to see.

Figure 2-4 shows the associations between an MdmMetadataProvider and the subclasses of MdmSchema.

Figure 2-4 Associations Between MdmMetadataProvider and the MdmSchema Subclasses

[image: Description of Figure 2-4 follows]

Representing Database Schemas

Each Oracle Database user owns a relational schema. The schema for a database user is represented by an MdmDatabaseSchema object. The MdmRootSchema has one MdmDatabaseSchema object for each database user. An MdmDatabaseSchema has the same name as the database user. For example, the name of the MdmDatabaseSchema for the user GLOBAL is GLOBAL.

You can get one or all of the MdmDatabaseSchema objects with methods of the MdmRootSchema. However, access to the objects that are owned by an MdmDatabaseSchema is determined by the security privileges granted to the user of the session. For information on object and data security management and privileges, see Oracle OLAP User's Guide.

An MdmDatabaseSchema is the owner of top-level OLAP metadata objects and the objects created by them. You use an MdmDatabaseSchema to get existing metadata objects or to create new ones. The top-level objects are the following.

	Top-level Objects
	AW	MdmNamedBuildProcess	MdmPrimaryDimension
	MdmCube	MdmOrganizationalSchema	MdmTable

Except for an MdmTable, you can create new top-level objects, or get existing ones, with the findOrCreate methods such as findOrCreateAW and findOrCreateStandardDimension. Creating objects is described in Chapter 3.

When you commit the Transaction in which you have created top-level OLAP metadata objects, those objects then exist in the Oracle data dictionary. They are available for use by ordinary SQL queries as well as for use by applications that use the Oracle OLAP Java API.

Because the metadata objects exist in the Oracle data dictionary, an Oracle Database DBA can restrict access to certain types of the metadata objects. In a client application, you can set such restrictions by using the JDBC API to send standard SQL GRANT and REVOKE commands through the JDBC connection for the user session.

You can get an MdmTable, or other top-level object, with the getTopLevelObject method. You can get all of the instances of a particular type of top-level object with methods such as getAWs, getDimensions, or getOrganizationalSchemas, or you can use the getSchemaObjects to get all of the objects owned by the MdmDatabaseSchema. You can add or remove top-level objects with methods like addAW and removeSchemaObject.

Representing Organizational Schemas

An OLAP measure folder organizes measures, cubes, and dimensions. A measure folder is represented by the MdmOrganizationalSchema class. Measure folders provide a way to differentiate among the similarly named measures. For example, a user may have access to several schemas with measures named SALES or COSTS. You could separate measures that have the same name into different MdmOrganizationalSchema objects. An MdmOrganizationalSchema has methods for adding or removing cubes, dimensions, and measures. You can nest organizational schemas, so the class also has methods for adding and removing other MdmOrganizationalSchema objects.

Providing Access to Data Sources

Some of the classes in the mdm package that represent objects that contain or provide access to the data in the data store. Some of these classes represent OLAP dimensional data model objects, which include cubes, measures, dimensions, levels, hierarchies, and attributes. Other mdm classes represent relational objects such as tables, or columns in a view or table.

Figure 2-5 shows the associations between the classes that implement dimensional data model objects. An MdmCube can contain from zero to many MdmMeasure objects. An MdmMeasure is contained by one MdmCube object. An MdmCube can have from zero to many MdmPrimaryDimension objects, which are associated with it through MdmDimensionality objects. An MdmPrimaryDimension can contain from zero to many MdmDimensionLevel objects, MdmHierarchy objects, and MdmAttribute objects.

Figure 2-5 Associations of Dimensional Data Model Classes

[image: Description of Figure 2-5 follows]

The classes that represent these dimensional or relational data objects are subclasses of the MdmSource class. Subclasses of MdmSource have a getSource method, which returns a Source object. You use Source objects to define a query of the data. You then use Cursor objects to retrieve the data. For more information about working with Source and Cursor objects, see Chapter 5, "Understanding Source Objects" and Chapter 8, "Understanding Cursor Classes and Concepts".

You can also use SQL to query the views that Oracle OLAP automatically generates for the cubes, dimensions, and hierarchies. For information on querying these views, see "Getting Dimension and Hierarchy View and View Column Names".

Representing Cubes and Measures

Cubes are the physical implementation of the dimensional model. They organize measures that have the same set of dimensions. Cubes and measures are dimensioned objects; the dimensions associated with a cube identify and categorize the data of the measures.

Representing Cubes

An OLAP cube is represented by the MdmCube class. An MdmCube is a container for MdmMeasure objects that are dimensioned by the same set of MdmPrimaryDimension objects. An application creates MdmBaseMeasure or MdmDerivedMeasure objects with the findOrCreateBaseMeasure and findOrCreateDerivedMeasure methods of an MdmCube. It associates each of the dimensions of the measures with the cube by using the addDimension method.

An MdmCube usually corresponds to a single fact table or view. To associate the table or view with the cube, you use Query and CubeMap objects. You get the Query for the table or view and then associate the Query with the CubeMap by using the setQuery method of the CubeMap.

The CubeMap contains MeasureMap and CubeDimensionalityMap objects that map the measures and dimensions of the cube to data sources. With the MeasureMap, you specify an MdmBaseMeasure and an Expression that identifies the column in the fact table or view that contains the base data for the measure.

To map the dimensions of the cube you get the MdmDimensionality objects of the cube. You create a CubeDimensionalityMap for each MdmDimensionality. You then specify an Expression for the CubeDimensionalityMap that identifies the foreign key column for the dimension in the fact table or view. If you want to specify a dimension column other than the column for the leaf-level dimension members, then you must specify a join Condition with the setJoinCondition method of the CubeDimensionalityMap.

An MdmCube has an associated CubeOrganization. The CubeOrganization deploys the cube in an analytic workspace or as a relational database object. To deploy a cube to an analytic workspace, you call the findOrCreateAWCubeOrganization method of the MdmCube. You use the AWCubeOrganization returned by that method to specify characteristics of the cube, such as how Oracle OLAP builds the cube, how the cube stores measure data, and whether the database creates materialized views for the cube. For information on the AWCubeOrganization class, see Oracle OLAP Java API Reference.

If the AWCubeOrganization has a materialized view option of REWRITE_MV_OPTION, then Oracle OLAP creates a materialized view for the cube that can be used by the database query rewrite system. If the materialized view option is REWRITE_WITH_ATTRIBUTES_MV_OPTION, then Oracle OLAP includes in the rewrite materialized view the dimension attributes for which the isPopulateLineage method returns true. You set the materialized view options with the setMVOption method of the AWCubeOrganization.

An MdmCube also has a ConsistentSolveSpecification object, which contains one or more ConsistentSolveCommand objects that specify how Oracle OLAP calculates (or solves) the values of the measures of the cube. For example, as the ConsistentSolveCommand, you could specify an AggregationCommand that represents the SUM or the MAX function. You specify the ConsistentSolveSpecification with the setConsistentSolveSpecification method of the cube.

A cube is consistent when the values of the measures match the specification, for example, when the values of the parents are equal to the SUM of the values of their children. A cube becomes consistent when the BuildProcess executes the ConsistentSolveCommand.

For examples of creating MdmCube and MdmMeasure objects and mapping them, and of the other operations described in this topic, see Example 4-7, "Creating and Mapping an MdmCube" and Example 4-8, "Creating and Mapping Measures".

Figure 2-6 shows the associations between an MdmCube and the some of the classes mentioned in this topic. The figure shows an MdmCube as deployed in an analytic workspace.

Figure 2-6 MdmCube and Associated Objects

[image: Description of Figure 2-6 follows]

Representing Measures

An MdmMeasure is an abstract class that represents a set of data that is organized by one or more MdmPrimaryDimension objects. The structure of the data is similar to that of a multidimensional array. Like the dimensions of an array, which provide the indexes for identifying a specific cell in the array, the MdmPrimaryDimension objects that organize an MdmMeasure provide the indexes for identifying a specific value of the MdmMeasure.

For example, suppose you have an MdmMeasure that has data that records the number of product units sold to a customer during a time period and through a sales channel. The data of the measure is organized by dimensions for products, times, customers, and channels (with a channel representing the sales avenue, such as catalog or internet.). You can think of the data as occupying a four-dimensional array with the product, time, customer, and channel dimensions providing the organizational structure. The values of these four dimensions are indexes for identifying each particular cell in the array. Each cell contains a single data value for the number of units sold. You must specify a value for each dimension in order to identify a value in the array.

The values of an MdmMeasure are usually numeric, but a measure can have values of other data types. The concrete subclasses of MdmMeasure are MdmBaseMeasure and MdmDerivedMeasure.

An MdmBaseMeasure in an analytic workspace has associated physical storage structures. Typically an MdmCube gets the base data for an MdmBaseMeasure from a column in a fact table. Oracle OLAP then calculates the aggregate values of the measure and stores those values in an OLAP view for the cube.

When you create an MdmBaseMeasure, you can specify the SQL data type of the measure with the setSQLDataType method. If you do not specify it, then the MdmBaseMeasure has the data type of the source data to which you map it.

By specifying true with the setAllowAutoDataTypeChange method, you can allow Oracle OLAP to automatically set the SQL data type of the measure. This can be useful if the data type of a measure changes. If you allow the automatic changing of the SQL data type, then Oracle OLAP determines the appropriate SQL data type whether or not you have specified one with the setSQLDataType method.

An MdmDerivedMeasure has no associated physical storage. Oracle OLAP dynamically calculates the values for an MdmDerivedMeasure as needed.

The values of an MdmMeasure are determined by the structure of the MdmPrimaryDimension objects of the MdmMeasure. That is, each value of an MdmMeasure is identified by a tuple, which is a unique combination of members from the MdmPrimaryDimension objects.

The MdmPrimaryDimension objects of an MdmMeasure are MdmStandardDimension or MdmTimeDimension objects. They usually have at least one hierarchical structure. Those MdmPrimaryDimension objects include all of the members of their component MdmHierarchy objects. Because of this structure, the values of an MdmMeasure are of one or more of the following:

	
Values from the fact table column, view, or calculation on which the MdmMeasure is based. These values are identified by a combination of the members at the leaf levels of the hierarchies of a dimension.

	
Aggregated values that Oracle OLAP has provided. These measure values are identified by at least one member from an aggregate level of a hierarchy.

	
Values specified by an Expression for a MdmDerivedMeasure or a custom dimension member.

As an example, imagine an MdmBaseMeasure that is dimensioned by an MdmTimeDimension and an MdmStandardDimension of products. The metadata objects for the measure and the dimensions are mdmUnitCost, mdmTimeDim, and mdmProdDim. Each of the mdmTimeDim and the mdmProdDim objects has all of the leaf members and aggregate members of the dimension it represents. A leaf member is one that has no children. An aggregate member has one or more children.

A unique combination of two members, one from mdmTimeDim and one from mdmProdDim, identifies each mdmUnitCost value, and every possible combination of dimension members is used to specify the entire set of mdmUnitCost values.

Some mdmUnitCost values are identified by a combination of leaf members (for example, a particular product item and a particular month). Other mdmUnitCost values are identified by a combination of aggregate members (for example, a particular product family and a particular quarter). Still other mdmUnitCost values are identified by a mixture of leaf and aggregate members.

The values of mdmUnitCost that are identified only by leaf members come directly from the column in the database fact table (or fact table calculation). They represent the lowest level of data. However, the values that are identified by at least one aggregate member are calculated by Oracle OLAP. These higher-level values represent aggregated, or rolled-up, data. Thus, the data represented by an MdmBaseMeasure is a mixture of fact table data from the data store and aggregated data that Oracle OLAP makes available for analytical manipulation.

Representing Dimensions, Levels, and Hierarchies

A dimension represents the general concept of a list of members that can organize a set of data. For example, if you have a set of figures that are the prices of product items during month time periods, then the unit price data is represented by an MdmMeasure that is dimensioned by dimensions for time and product values. The time dimension includes the month values and the product dimension includes item values. The month and item values act as indexes for identifying each particular value in the set of unit price data.

A dimension can contain levels and hierarchies. Levels can group dimension members into parent and child relationships, where members of lower levels are the children of parents that are in higher levels. Hierarchies define the relationships between the levels. Dimensions usually have associated attributes.

The base class for dimension, level, and hierarchy objects is the abstract class MdmDimension, which extends MdmSource. An MdmDimension has methods for getting and for removing the attributes associated with the object. It also has methods for getting and setting the cardinality and the custom order of the members of the object. The direct subclasses of MdmDimension are the abstract MdmPrimaryDimension and MdmSubDimension classes.

MdmPrimaryDimension and MdmHierarchyLevel objects can have associated MdmAttribute objects. For information on attributes, see "Representing Dimension Attributes".

Representing Dimensions

Dimensions are represented by instances of the MdmPrimaryDimension class, which is an abstract subclass of MdmDimension. The concrete subclasses of the MdmPrimaryDimension class represent different types of data. The concrete subclasses of MdmPrimaryDimension are the following:

	
MdmMeasureDimension, which has all of the MdmMeasure objects in the data store as the values of the dimension members. A data store has only one MdmMeasureDimension. You can obtain the MdmMeasureDimension by calling the getMeasureDimension method of the MdmRootSchema. You can get the measures of the data store by calling the getMeasures method of the MdmMeasureDimension.

	
MdmStandardDimension, which has no special characteristics, and which typically represent dimensions of products, customers, distribution channels, and so on.

	
MdmTimeDimension, which has time periods as the values of the members. Each time period has an end date and a time span. An MdmTimeDimension has methods for getting the attributes that record that information.

An MdmPrimaryDimension implements the following interfaces.

	
Buildable, which is a marker interface for objects that you can specify in constructing a BuildItem.

	
MdmMemberListMapOwner, which defines methods for finding or creating, or getting, a MemberListMap object.

	
MdmViewColumnOwner, which is marker interface for objects that can have an associated MdmViewColumn.

	
MetadataObject, which defines a method for getting a unique identifier.

	
MdmQuery, which defines methods for getting the Query object associated with the implementing class and for getting information about the Query.

An MdmPrimaryDimension can have component MdmDimensionLevel objects that organize the dimension members into levels. It also can have MdmHierarchy objects, which organize the levels into the hierarchies. An MdmPrimaryDimension has all of the members of the component MdmHierarchy objects, while each of the MdmHierarchy objects has only the members in that hierarchy.

You can get all of the MdmPrimaryDimension objects that are contained by an MdmDatabaseSchema or an MdmOrganizationalSchema by calling the getDimensions method of the object. An MdmDatabaseSchema has methods for finding an MdmTimeDimension or an MdmStandardDimension by name or creating the object if it does not already exist.

MdmStandardDimension and MdmTimeDimension objects contain MdmAttribute objects. Some of the attributes are derived by Oracle OLAP, such as the parent attribute, and others you map to data in relational tables or to data that you specify by an Expression. For information on attributes, see "Representing Dimension Attributes".

An MdmPrimaryDimension can organize the dimension members into one or more levels. Each level is represented by an MdmDimensionLevel object. An MdmStandardDimension or an MdmTimeDimension can contain MdmHierarchy objects that organize the levels into hierarchical relationships. In an MdmLevelHierarchy the dimension levels are represented by MdmHierarchyLevel objects. The concrete MdmDimensionLevel and MdmHierarchyLevel classes, and the abstract MdmHierarchy class, are the direct subclasses of the abstract MdmSubDimension class.

Representing Dimension Levels

An MdmDimensionLevel represents a set of dimension members that are at the same level. A dimension member can be in at most one dimension level. You get or create an MdmDimensionLevel with the findOrCreateDimensionLevel of an MdmPrimaryDimension. You can map an MdmDimensionLevel to a data source by using a MemberListMap.

An MdmPrimaryDimension has a method for getting a list of all of the MdmDimensionLevel objects that it contains. It also has a method for finding an MdmDimensionLevel by name or creating the object if it does not already exist.

Representing Hierarchies

MdmHierarchy is an abstract subclass of MdmSubDimension. The concrete subclasses of MdmHierarchy are MdmLevelHierarchy and MdmValueHierarchy.

An MdmHierarchy organizes the members of a dimension into a hierarchical structure. The parent-child hierarchical relationships of an MdmLevelHierarchy are based on the levels of the dimension. In an MdmValueHierarchy, the hierarchical relationships are based on dimension member values and not on levels. An MdmPrimaryDimension can have more than one of either or both kinds of hierarchies.

The parent of a hierarchy member is recorded in a parent MdmAttribute, which you can get by calling the getParentAttribute method of the MdmHierarchy. The ancestors of a hierarchy member are recorded in an ancestors MdmAttribute, which you can get by calling the getAncestorsAttribute method.

An MdmPrimaryDimension has a method for getting a list of all of the MdmHierarchy objects that it contains. It also has methods for finding an MdmLevelHierarchy or MdmValueHierarchy by name or creating the object if it does not already exist.

Representing a Level-based Hierarchy

MdmLevelHierarchy is a subclass of MdmHierarchy. An MdmLevelHierarchy has a tree-like structure with a top, or highest, level, and a leaf, or lowest, level. Each member may have zero or one parent in the hierarchy. Cycles are not allowed, for example where member A is the parent of member B, member B is the parent of member C, and member C is the parent of member A.

Members that are not the child of any other member are the top members. Members with children are aggregates or aggregate members of the hierarchy. Members with no children are the leaves or leaf members of the hierarchy.

Each member is in a level. The levels are ordered, from top level to leaf level. The order is determined by the order in which you create the MdmDimensionLevel objects of the MdmPrimaryDimension. The first MdmDimensionLevel that you create is the top level and the last one you create is the leaf level. For example, for the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension, the CreateAndBuildAW.java and SpecifyAWValues example programs create four MdmDimensionLevel objects in the following order: TOTAL_TIME, YEAR, QUARTER, and MONTH. The top level is TOTAL_TIME and the leaf level is MONTH.

If a member of the hierarchy has a parent, then that parent must be in a higher level. Oracle OLAP expects that all leaf members in the hierarchy are in the leaf level. You can specify that Oracle OLAP allow the hierarchy to be ragged. In a ragged hierarchy, one or more leaf members are not in the leaf level. You can specify allowing the hierarchy to be ragged by calling the setIsRagged(true) method of the MdmLevelHierarchy.

Oracle OLAP also expects that if a member is in a level below the top level, then that member has a parent, and that the parent is in the level just above the level of the member. If a member is not at the top level and that member either does not have a parent or the parent is not in the next higher level, then the hierarchy is a skip-level hierarchy. You can specify allowing a skip-level hierarchy by calling the setIsSkipLevel(true) method of the MdmLevelHierarchy.

Figure 2-7 illustrates the relationships of members in a regular hierarchy, a ragged hierarchy, and two types of skip-level hierarchies.

Figure 2-7 Regular, Ragged, and Skip-level Hierarchies

[image: Description of Figure 2-7 follows]

The different levels of an MdmLevelHierarchy are represented by MdmHierarchyLevel objects. For an example of creating a level-based hierarchy, see "Creating and Mapping an MdmLevelHierarchy".

The MdmLevelHierarchy has all of the members of the hierarchy, and each of the component MdmHierarchyLevel objects has only the members at the level that it represents. An MdmLevelHierarchy can also represent a nonhierarchical list of members, in which case the MdmLevelHierarchy has one MdmHierarchyLevel, and both objects have the same members. You get the levels of an MdmLevelHierarchy by calling the getHierarchyLevels method.

An MdmLevelHierarchy has a method for getting a list of all of the MdmHierarchyLevel objects that it contains. It also has a method for finding an MdmHierarchyLevel by name or creating the object if it does not already exist.

An MdmPrimaryDimension can contain more than one MdmLevelHierarchy. For example, an MdmTimeDimension dimension might have two MdmLevelHierarchy objects, one organized by calendar year time periods and the other organized by fiscal year time periods. The MdmHierarchyLevel objects of one hierarchy associate MdmDimensionLevel objects of calendar year time periods with the hierarchy. The MdmHierarchyLevel objects of the other hierarchy associate MdmDimensionLevel objects of fiscal year time periods with that hierarchy. Generally, level-based hierarchies share the lowest level, so the MdmHierarchyLevel for the lowest level of each of the hierarchies associates the same MdmDimensionLevel with each hierarchy. For example, the calendar year hierarchy and the fiscal year hierarchy share the same MdmHierarchyLevel of month time periods.

Representing a Value-based Hierarchy

A value-based hierarchy is one in which levels are not meaningful in defining the hierarchical relationships. This type of hierarchy is represented by the MdmValueHierarchy class, which is a subclass of MdmHierarchy. An example of a value hierarchy is the employee reporting structure of a company, which can be represented with parent-child relationships but without levels. For an example of creating a value-based hierarchy, see "Creating and Mapping an MdmValueHierarchy".

The OLAP view for the value hierarchy has a column that contains all employees, including those who are managers. It has another column that contains the parent members. Another column identifies the depth of the member in the hierarchy, where the member that has no manager is at depth 0 (zero), the employees who report to that manager are at level 1, and so on.

Representing Hierarchy Levels

MdmHierarchyLevel is a subclass of MdmSubDimension. An MdmHierarchyLevel associates an MdmDimensionLevel with an MdmLevelHierarchy.

The order of the levels in the hierarchy is specified by the order in which you create the MdmHierarchyLevel objects for the MdmLevelHierarchy. The first MdmHierarchyLevel that you create is the highest level and the last one that you create is the lowest level. For an example of creating a hierarchy, see "Creating and Mapping an MdmLevelHierarchy".

Representing Dimension Attributes

An OLAP dimension attribute is represented by an MdmAttribute object. An MdmAttribute has values that are related to members of an MdmPrimaryDimension. The MdmAttribute class is a subclass of MdmDimensionedObject because, like an MdmMeasure, the values of an MdmAttribute have meaning in relation to the members of the dimension.

The relation can be one-to-one, many-to-one, or one-to-many. For example, the PRODUCT_AWJ dimension has a short description attribute, a package attribute, and an ancestors attribute. The short description attribute has a separate value for each dimension member. The package attribute has a set of values, each of which applies to more than one dimension member. The ancestors attribute has multiple values that apply to a single dimension member. If an MdmAttribute does not apply to a member of an MdmDimension, then the MdmAttribute value for that member is null.

Table 2-3 shows the first few members of the PRODUCT_AWJ dimension and their related short description and package attribute values. Only some of the members of the ITEM level of the dimension have a package attribute. For other items, and for higher levels, the package attribute value is null, which appears as NA in the table.

Table 2-3 Dimension Members and Related Attribute Values

	Dimension Member	Related Short Description	Related Package
	
TOTAL_PRODUCT::TOTAL

	
Total Product

	
NA

	
CLASS::HRD

	
Hardware

	
NA

	
FAMILY::DISK

	
CD/DVD

	
NA

	
ITEM::EXT CD ROM

	
External 48X CD-ROM

	
NA

	
ITEM::EXT DVD

	
External - DVD-RW - 8X

	
Executive

	
ITEM::INT 8X DVD

	
Internal - DVD-RW - 8X

	
NA

	
ITEM::INT CD ROM

	
Internal 48X CD-ROM

	
Laptop Value Pack

	
ITEM::INT CD USB

	
Internal 48X CD-ROM USB

	
NA

	
ITEM::INT RW DVD

	
Internal - DVD-RW - 6X

	
Multimedia

	
...

	
...

	
...

To get values from an MdmAttribute, you must join the Source for the MdmAttribute and a Source that specifies one or more members of the MdmDimension. For an explanation of joining Source objects, see Chapter 5. For examples of joining the Source objects for an MdmAttribute and an MdmDimension, see Example 4-5 and examples from Chapter 5 and Chapter 6, such as Example 5-7 and Example 6-10.

Describing the MdmAttribute Class

The abstract MdmAttribute class has a subclass, which is the abstract class MdmSingleValuedAttribute. That class has two concrete subclasses: MdmBaseAttribute and MdmDerivedAttribute.

Describing Types of Attributes

An MdmAttribute is contained by the MdmPrimaryDimension that creates it. Some attributes, such as the parent attribute and the level attribute, are derived by Oracle OLAP from the structure of the dimension. Others are common attributes for which an MdmPrimaryDimension has accessor methods, such as the long and short description attributes, or the end date and time span attributes that an MdmTimeDimension requires. After you create one of those attributes, you associate it with the dimension through a method such as the setShortValueDescriptionAttribute method of an MdmPrimaryDimension or the setTimeSpanAttribute method of an MdmTimeDimension. You can also create attributes for your own purposes, such as the PACKAGE attribute in the GLOBAL_AWJ example analytic workspace.

Associating an Attribute with an MdmSubDimension

After you create an attribute, you associate it with an MdmSubDimension. You can associate it with just a single MdmSubDimension by using the addAttribute method of the MdmSubDimension. You can also associate it with all of the MdmDimensionLevel objects of an MdmPrimaryDimension by using the setIsVisibleForAll method of the MdmAttribute. If you specify true with the setIsVisibleForAll method, then the attribute applies to all of the MdmDimensionLevel objects that are currently contained by the MdmPrimaryDimension and to any MdmDimensionLevel objects that you subsequently create or add to the dimension.

Getting MdmAttribute Objects

The getAttributes method of an MdmPrimaryDimension returns all of the MdmAttribute objects that were created by a client application. The getAttributes method of an MdmSubDimension returns only those attributes that the application added to it with it the addAttribute method. Other methods of an MdmPrimaryDimension return specific attributes that Oracle OLAP generates, such as the getHierarchyAttribute, the getLevelDepthAttribute, or the getParentAttribute method.

Specifying a Target Dimension

A target dimension for an attribute is similar to defining a foreign key constraint between columns in a table. All of the values of the attribute must also be keys of the target dimension.

You can specify a target dimension for an attribute by using the setTargetDimension method of the MdmAttribute. The relational table that is the Query for the target dimension must have a column that contains all of the values that are in the column of the dimension table to which you map the attribute.

Describing the MdmBaseAttribute Class

An MdmBaseAttribute has values that are stored in the OLAP views for the dimension that contains it and the hierarchy to which it applies. For information on OLAP views, see "Using OLAP Views".

You create an MdmBaseAttribute with the findOrCreateBaseAttribute method of an MdmPrimaryDimension. You map the MdmBaseAttribute to a column in a relational table or view. When you build the MdmPrimaryDimension that created the attribute, Oracle OLAP stores the values of the MdmBaseAttribute in an OLAP view. You can get the column for the MdmBaseAttribute in the OLAP view by using the getETAttributeColumn method. That method returns an MdmViewColumn object.

Examples of MdmBaseAttribute objects are the name attribute created and mapped in Example 4-5 and the long description attribute created in Example 4-6. The mapping for that long description attribute is in Example 4-3.

For regular OLAP queries, using Source objects, you only need to map an MdmBaseAttribute to MdmDimensionLevel objects by using MemberListMap objects. For SQL queries against OLAP views, you should map the attributes to MdmHierarchyLevel objects by using HierarchyLevelMap objects.

Specifying a Data Type

When you create an MdmBaseAttribute, you can specify the SQL data type with the setSQLDataType method. If you do not specify it, then the MdmBaseAttribute has the data type of the source data to which you map it. For example, the SQL data type of the short description attribute is VARCHAR2 and the data type of the end date attribute is DATE.

By specifying true with the setAllowAutoDataTypeChange method, you can allow Oracle OLAP to automatically set the SQL data type. If you allow the automatic changing of the SQL data type, then Oracle OLAP ignores the SQL data type specified by the setSQLDataType method. This can be useful if you map the same attribute to levels that have different data types, or if the data type of a level changes.

Grouping Attributes

With the setAttributeGroupName method of an MdmBaseAttribute, you can specify a name for an attribute group. You can specify the same group name for other attributes. For example, you could create a long description attribute for each dimension level and give each attribute the group name of LONG_DESCRIPTION. You could use the group name to identify similar kinds of attributes. You get the group name with the getAttributeGroupName method.

Creating an Index

You can improve the performance of attribute-based queries by creating an index for the attribute. Creating an index adds maintenance time and increases the size of the analytic workspace, which may increase the build time for extremely large dimensions. You create an index for an attribute by specifying true with the setCreateAttributeIndex method of the AWAttributeOrganization for the MdmBaseAttribute.

Specifying a Language for an Attribute

When you create an AttributeMap for an MdmBaseAttribute, you can specify a language for the attribute. For example, to specify French as the language for the long description attribute for the MdmDimensionLevel named CHANNEL, you would create an AttributeMap by calling the MemberListMap.findOrCreateAttributeMap method and passing in the long description MdmBaseAttribute and FRENCH as the String that specifies the language. You would then specify GLOBAL.CHANNEL_DIM.CHANNEL_DSC_FRENCH as the Expression for the AttributeMap. By using the setLanguage method of an AttributeMap, you can specify a language for an AttributeMap after you have created it.

Specifying Multilingual Attributes

The MdmBaseAttribute.setMultiLingual method allows you to map more than one language column to the same attribute. To do so, you specify true with the setMultiLingual method of the attribute. You then create a separate AttributeMap for each language but you use the same MdmBaseAttribute.

The language in use for the database determines which language appears in the OLAP view for the dimension. Only one language is in use at a time in a session, but if the language in use changes, then the language in the attribute column in the OLAP view also changes. For more information on specifying languages for database sessions, see Oracle Database Globalization Support Guide.

For materialized views, you should create a separate attribute for each language, so that there is a long description attribute for English, one for French, and so on. That behavior is more typical in SQL, which does not expect multivalued columns.

Populating OLAP Views with Hierarchical Attribute Values

For SQL queries, you should populate the lineage of the attributes in the view by specifying true with the MdmBaseAttribute.setPopulateLineage method. Populating the lineage means that in the column for an attribute in an OLAP view, Oracle OLAP populates the rows for lower levels in a dimension hierarchy with the attribute values that are mapped at a higher level. Populating the lineage for the attributes is also useful if you are creating materialized views for an analytic workspace cube.

If you specify setPopulateLineage(false), which is the default for the setting, then the attribute values appear only in the rows for the hierarchy members at the level to which the attribute is mapped. For hierarchy members at other levels, the attribute value is null. If you specify setPopulateLineage(true), then the attribute values appear in the rows for the members of the mapped level and for the hierarchy members of all levels that are descendants of the mapped level.

Populating the hierarchy lineage in an OLAP view makes the contents of the view more like the contents of a relational table in a star schema. For example, you could create a separate long description attribute on the dimension for each MdmDimensionLevel of the dimension. You would specify populating the lineage of those attributes by calling the setPopulateLineage(true) method of each attribute. You would then make the attribute visible for a hierarchy level by adding the attribute to the MdmHierarchyLevel with the addAttribute method.

The OLAP view for a hierarchy of the dimension would then have a column for each of the long description attributes. Those columns would contain the long description attribute values for the members of the mapped hierarchy level and for the hierarchy members of all levels that are descendants of the mapped level.

For example, the CreateAndBuildAW example class has a line of code that specifies populating the lineage for the MdmBaseAttribute objects that it adds to each individual MdmHierarchyLevel. The following line appears in the createLineageAttributes method of the class.

 mdmAttr.setPopulateLineage(true);

Example 2-2 shows the results of the following SQL query when that line of code is commented out. Example 2-3 shows the results of the SQL query when the line is included in the class. Both examples show the values that are in the selected columns of the OLAP view for the PRODUCT_PRIMARY hierarchy. The view name is PRODUCT_AWJ_PRODUCT_PRIMA_VIEW. The examples show only a few of the lines returned by the SQL query.

SELECT TOTAL_PRODUCT_SHORT_DESC || '*' || CLASS_SHORT_DESC || '*' ||
 FAMILY_SHORT_DESC || '*' || ITEM_SHORT_DESC
 FROM PRODUCT_AWJ_PRODUCT_PRIMA_VIEW
 ORDER BY TOTAL_PRODUCT nulls first, CLASS nulls first,
 FAMILY nulls first, ITEM nulls first;

In Example 2-2, the attribute rows of the OLAP view have only the attribute values for the hierarchy level to which the dimension member belongs.

Example 2-2 Values in OLAP View Columns After setPopulateLineage(false)

TOTAL_PRODUCT_SHORT_DESC||'*'||CLASS_SHORT_DESC||'*'||FAMILY_SHORT_DESC||'*'||IT
--
Total Product***
*Hardware**
**CD/DVD*
***External 48X CD-ROM
***External - DVD-RW - 8X
***Internal - DVD-RW - 8X
...
**Desktop PCs*
***Sentinel Financial
***Sentinel Multimedia
***Sentinel Standard
**Portable PCs*
***Envoy Ambassador
***Envoy Executive
***Envoy Standard
...

In Example 2-3, the attribute rows of the OLAP view are populated with the attribute values for the ancestors of a dimension member. For example, the first row contains only the value Total Product because TOTAL_PRODUCT is the highest level in the hierarchy. The row that contains the value Envoy Standard also has the values for the TOTAL_PRODUCT, CLASS, and FAMILY levels.

Example 2-3 Values in OLAP View Columns After setPopulateLineage(true)

TOTAL_PRODUCT_SHORT_DESC||'*'||CLASS_SHORT_DESC||'*'||FAMILY_SHORT_DESC||'*'||IT
--
Total Product***
Total Product*Hardware**
Total Product*Hardware*CD/DVD*
Total Product*Hardware*CD/DVD*External 48X CD-ROM
Total Product*Hardware*CD/DVD*External - DVD-RW - 8X
Total Product*Hardware*CD/DVD*Internal - DVD-RW - 8X
...
Total Product*Hardware*Desktop PCs*
Total Product*Hardware*Desktop PCs*Sentinel Financial
Total Product*Hardware*Desktop PCs*Sentinel Multimedia
Total Product*Hardware*Desktop PCs*Sentinel Standard
Total Product*Hardware*Portable PCs*
Total Product*Hardware*Portable PCs*Envoy Ambassador
Total Product*Hardware*Portable PCs*Envoy Executive
Total Product*Hardware*Portable PCs*Envoy Standard
...

Preparing Attributes for Materialized Views

To generate materialized views for the OLAP metadata objects, for each MdmDimensionLevel you must create an MdmBaseAttribute, map it to a unique key for the MdmDimensionLevel, and add it to the MdmDimensionLevel. An MdmDimensionLevel has methods for adding, getting, and removing unique key attributes. The EnableMVs.java example program creates unique key attributes and adds them to the MdmDimensionLevel objects of the dimensions. For information about using materialized views, see Oracle OLAP User's Guide.

When Oracle OLAP creates a materialized view for a cube, it creates columns for the attributes of the dimensions of the cube. For the name of a column, it uses the name of the attribute column from the OLAP view of the dimension. To ensure that the column name is unique, Oracle OLAP adds a default prefix to the name. You can specify the prefix by using the setETAttrPrefix method of the MdmDimensionality object for a dimension of the cube.

Describing the MdmDerivedAttribute Class

An MdmDerivedAttribute has values that Oracle OLAP calculates on the fly as you need them. Oracle OLAP generates several MdmDerivedAttribute objects, such as the attributes returned by the getParentAttribute and the getAncestorsAttribute methods of an MdmPrimaryDimension.

Using OLAP Views

For each instance of an MdmCube, MdmPrimaryDimension, and MdmHierarchy in an analytic workspace, Oracle OLAP automatically creates an associated relational view. Oracle OLAP uses these views internally to provide access to the aggregate and calculated data that is generated by the analytic workspace. An OLAP Java API query transparently uses the views. In the OLAP Java API, these views are called ET (embedded totals) views.

A SQL application can directly query these views, using them as it would the fact tables and dimension tables of a star or snowflake schema. The Oracle OLAP User's Guide documentation refers to these views as OLAP views and describes them in detail. For those detailed descriptions, see Oracle OLAP User's Guide.

A client OLAP Java API application can get the names of the OLAP views and get the names of columns in the views. The application could display the names to the end user of the application, and the end user could then use the names in a SQL SELECT statement to query the OLAP objects.

Getting Cube View and View Column Names

To get the name of a cube view, call the MdmCube.getViewName() method. For example, the following code gets the name of the view for the MdmCube that is named UNITS_CUBE_AWJ. In the code, the mdmDBSchema object is the MdmDatabaseSchema for the GLOBAL user.

MdmCube mdmUnitsCube =
 (MdmCube)mdmDBSchema.getTopLevelObject("UNITS_CUBE_AWJ");
String cubeViewName = mdmUnitsCube.getViewName();
println("The name of the view for the " +
 mdmUnitsCube.getName() + " cube is " + cubeViewName + ".");

The output of the code is the following.

The name of the view for the UNITS_CUBE_AWJ cube is UNITS_CUBE_AWJ_VIEW.

You can change the name of the OLAP view by using the MdmCube.setViewName method. To make the name change permanent, you must commit the Transaction.

The OLAP view for an MdmCube has a column for each measure of the cube, including each derived measure. In Oracle OLAP User's Guide, a derived measure is known as a calculated measure. A cube view also has a column for each dimension of the cube. For example, for the MdmCube named UNITS_CUBE_AWJ, the view is named UNITS_CUBE_AWJ_VIEW. The following code gets the names of the view columns.

MdmCube mdmUnitsCube = mdmDBSchema.findOrCreateCube("UNITS_CUBE_AWJ");
List<MdmQueryColumn> mdmQCols = mdmUnitsCube.getQueryColumns();
for (MdmQueryColumn mdmQCol : mdmQCols)
{
 MdmViewColumn mdmViewCol = (MdmViewColumn) mdmQCol;
 println(mdmViewCol.getViewColumnName());
}

The code displays the following output.

TIME_AWJ
PRODUCT_AWJ
CUSTOMER_AWJ
CHANNEL_AWJ
UNITS
SALES
COST

The UNITS, SALES, and COST columns are for the measures of the cube, and the other four columns are for the dimensions of the cube.

Getting Dimension and Hierarchy View and View Column Names

To get the name of the OLAP view for a dimension or a hierarchy, call the getETViewName() method of the MdmPrimaryDimension or MdmHierarchy. You can get the name of a column in the view by calling the appropriate method of the metadata object. For example, the following code gets the name of the key column for the CHANNEL_AWJ dimension and the parent column for the CHANNEL_PRIMARY hierarchy.

println(mdmChanDim.getETKeyColumn().getViewColumnName());
MdmViewColumn mdmParentCol =(MdmViewColumn) mdmChanHier.getETParentColumn();
println(mdmParentCol.getViewColumnName());

The code displays the following output.

DIM_KEY
PARENT

You can change the name of the OLAP view by using the setETViewName method of the MdmPrimaryDimension or MdmHierarchy.

The OLAP view for an MdmPrimaryDimension has a column for the dimension keys, a column for each dimension level, and a column for each attribute associated with the dimension. For example, for the MdmStandardDimension named CHANNEL_AWJ, the view is named CHANNEL_AWJ_VIEW. The SQL command DESCRIBE CHANNEL_AWJ_VIEW displays the names of the following columns.

DIM_KEY
LEVEL_NAME
MEMBER_TYPE
DIM_ORDER
LONG_DESCRIPTION
SHORT_DESCRIPTION
TOTAL_CHANNEL_LONG_DESC
TOTAL_CHANNEL_SHORT_DESC
CHANNEL_LONG_DESC
CHANNEL_SHORT_DESC

The OLAP view for an MdmHierarchy has a column for the dimension keys and a column for the parent of a hierarchy member. If it is an MdmLevelHierarchy, then it also has a column for each hierarchy level and a column for the depth of a level. If the hierarchy has one or more added attributes, then the view has a column for each attribute. For example, for the MdmLevelHierarchy named CHANNEL_PRIMARY, the view is named CHANNEL_AWJ_CHANNEL_PRIMA_VIEW. The SQL command DESCRIBE CHANNEL_AWJ_CHANNEL_PRIMA_VIEW displays the names of the following columns.

DIM_KEY
LEVEL_NAME
MEMBER_TYPE
DIM_ORDER
HIER_ORDER
LONG_DESCRIPTION
SHORT_DESCRIPTION
TOTAL_CHANNEL_LONG_DESC
TOTAL_CHANNEL_SHORT_DESC
CHANNEL_LONG_DESC
CHANNEL_SHORT_DESC
PARENT
DEPTH
TOTAL_CHANNEL
CHANNEL

Using OLAP View Columns

See Oracle OLAP User's Guide for several examples of how to create SQL queries using the OLAP views. An OLAP Java API query that uses Source objects automatically uses these views.

You can also provide direct access to the OLAP views to the users of your OLAP Java API application. You could allow users to specify a SQL SELECT statement that uses the views and then send that SQL query to the database.

Example 2-4 reproduces Example 4-2 of Oracle OLAP User's Guide except that it uses the cubes and dimensions of the analytic workspace. The example selects the SALES measure from UNITS_CUBE_AWJ_VIEW, and joins the keys from the cube view to the hierarchy views to select the data.

In the example, mdmDBSchema is the MdmDatabaseSchema for the GLOBAL user. The example is an excerpt from the BasicCubeViewQuery.java example program.

Example 2-4 Basic Cube View Query

// In a method...
 // Get the cube.
 MdmCube mdmUnitsCube =
 MdmCube)mdmDBSchema.getTopLevelObject("UNITS_CUBE_AWJ");
 // Get the OLAP view for the cube.
 String cubeViewName = mdmUnitsCube.getViewName();
 // Display the name of the OLAP view for the cube.
 println("The name of the OLAP view for the " + mdmUnitsCube.getName()
 + " cube is:\n " + cubeViewName);

 // Get the dimensions and the hierarchies of the dimensions.
 MdmPrimaryDimension mdmTimeDim =
 (MdmPrimaryDimension)mdmDBSchema.getTopLevelObject("TIME_AWJ");
 MdmLevelHierarchy mdmCalHier =
 mdmTimeDim.findOrCreateLevelHierarchy("CALENDAR_YEAR");

 // Display the name of the OLAP view name for the hierarchy and
 // display the names of the hierarchy levels.
 displayViewAndLevelNames(mdmCalHier);

 MdmPrimaryDimension mdmProdDim =
 (MdmPrimaryDimension)mdmDBSchema.getTopLevelObject("PRODUCT_AWJ");
 MdmLevelHierarchy mdmProdHier = mdmProdDim.findOrCreateLevelHierarchy("PRODUCT_PRIMARY");
 displayViewAndLevelNames(mdmProdHier);

 MdmPrimaryDimension mdmCustDim =
 (MdmPrimaryDimension)mdmDBSchema.getTopLevelObject("CUSTOMER_AWJ");
 MdmLevelHierarchy mdmShipHier =
 mdmCustDim.findOrCreateLevelHierarchy("SHIPMENTS");
 displayViewAndLevelNames(mdmShipHier);

 MdmPrimaryDimension mdmChanDim =
 (MdmPrimaryDimension)mdmDBSchema.getTopLevelObject("CHANNEL_AWJ");
 MdmLevelHierarchy mdmChanHier =
 mdmChanDim.findOrCreateLevelHierarchy("CHANNEL_PRIMARY");
 displayViewAndLevelNames(mdmChanHier);

 // Create a SQL SELECT statement using the names of the views and the
 // levels.
 // UNITS_CUBE_AWJ_VIEW has a column named SALES for the sales measure.
 // TIME_AWJ_CALENDAR_YEAR_VIEW has a column named LONG_DESCRIPTION
 // for the long description attribute.
 // The hierarchy views have columns that have the same names as the levels.
 String sql = "SELECT t.long_description time,\n" +
 " ROUND(f.sales) sales\n" +
 " FROM TIME_AWJ_CALENDAR_YEAR_VIEW t,\n" +
 " PRODUCT_AWJ_PRODUCT_PRIMA_VIEW p,\n" +
 " CUSTOMER_AWJ_SHIPMENTS_VIEW cu,\n" +
 " CHANNEL_AWJ_CHANNEL_PRIMA_VIEW ch,\n" +
 " UNITS_CUBE_AWJ_VIEW f\n" +
 " WHERE t.level_name = 'YEAR'\n" +
 " AND p.level_name = 'TOTAL_PRODUCT'\n" +
 " AND cu.level_name = 'TOTAL_CUSTOMER'\n" +
 " AND ch.level_name = 'TOTAL_CHANNEL'\n" +
 " AND t.dim_key = f.time_awj\n" +
 " AND p.dim_key = f.product_awj\n" +
 " AND cu.dim_key = f.customer_awj\n" +
 " AND ch.dim_key = f.channel_awj\n" +
 " ORDER BY t.end_date";

 // Display the SQL SELECT statement.
 println("\nThe SQL SELECT statement is:\n" + sql);

 // Display the results of the SQL query.
 String title = "\nThe results of the SQL query are:\n";
 executeSQL(sql, title);
// ...
} // End of method.

private void displayViewAndLevelNames(MdmLevelHierarchy mdmLevelHier)
{
 // Get the OLAP view name for the hierarchy.
 String levelHierViewName = mdmLevelHier.getETViewName();
 // Display the name of the OLAP view for the hierarchy.
 println("\nThe OLAP view for the " + mdmLevelHier.getName() +
 " hierarchy is:\n " + levelHierViewName);

 // Display the names of the levels of the hierarchy.
 displayLevelNames(mdmLevelHier);
}

private void displayLevelNames(MdmLevelHierarchy mdmLevelHier)
{
 List<MdmHierarchyLevel> mdmHierLevelList =
 mdmLevelHier.getHierarchyLevels();
 println("The names of the levels of the "
 + mdmLevelHier.getName() + " hierarchy are:");
 for (MdmHierarchyLevel mdmHierLevel : mdmHierLevelList)
 {
 println(" " + mdmHierLevel.getName());
 }
}

// The executeSQL method is in the BaseExample11g class.
protected void executeSQL(String sql, String heading)
{
 try
 {
 Statement statement = dp.getConnection().createStatement();
 println(heading);
 ResultSet rs = statement.executeQuery(sql);
 SQLResultSetPrinter.printResultSet(getCursorPrintWriter(), rs);
 rs.close();
 statement.close();
 }
 catch (SQLException e)
 {
 println("Could not execute SQL statement. " + e);
 }
}

The output of Example 2-4 is the following.

The name of the OLAP view for the UNITS_CUBE_AWJ cube is:
 UNITS_CUBE_AWJ_VIEW

The OLAP view for the CALENDAR_YEAR hierarchy is:
 TIME_AWJ_CALENDAR_YEAR_VIEW
The names of the levels of the CALENDAR_YEAR hierarchy are:
 TOTAL_TIME
 YEAR
 QUARTER
 MONTH

The OLAP view for the PRODUCT_PRIMARY hierarchy is:
 PRODUCT_AWJ_PRODUCT_PRIMA_VIEW
The names of the levels of the PRODUCT_PRIMARY hierarchy are:
 TOTAL_PRODUCT
 CLASS
 FAMILY
 ITEM

The OLAP view for the SHIPMENTS hierarchy is:
 CUSTOMER_AWJ_SHIPMENTS_VIEW
The names of the levels of the SHIPMENTS hierarchy are:
 TOTAL_CUSTOMER
 REGION
 WAREHOUSE
 SHIP_TO

The OLAP view for the CHANNEL_PRIMARY hierarchy is:
 CHANNEL_AWJ_CHANNEL_PRIMA_VIEW
The names of the levels of the CHANNEL_PRIMARY hierarchy are:
 TOTAL_CHANNEL
 CHANNEL

The SQL SELECT statement is:
SELECT t.long_description time,
 ROUND(f.sales) sales
 FROM TIME_AWJ_CALENDAR_YEAR_VIEW t,
 PRODUCT_AWJ_PRODUCT_PRIMA_VIEW p,
 CUSTOMER_AWJ_SHIPMENTS_VIEW cu,
 CHANNEL_AWJ_CHANNEL_PRIMA_VIEW ch,
 UNITS_CUBE_AWJ_VIEW f
 WHERE t.level_name = 'YEAR'
 AND p.level_name = 'TOTAL_PRODUCT'
 AND cu.level_name = 'TOTAL_CUSTOMER'
 AND ch.level_name = 'TOTAL_CHANNEL'
 AND t.dim_key = f.time_awj
 AND p.dim_key = f.product_awj
 AND cu.dim_key = f.customer_awj
 AND ch.dim_key = f.channel_awj
 ORDER BY t.end_date

The results of the SQL query are:

TIME SALES
---------- ----------------------
1998 100870877
1999 134109248
2000 124173522
2001 116931722
2002 92515295
2003 130276514
2004 144290686
2005 136986572
2006 140138317
2007 <null>

Using Source Objects

Example 2-4 demonstrates how to create a SQL statement using the OLAP views. You can produce the same results by using OLAP Java API Source objects, as shown in Example 2-5. The code in Example 2-5 uses the MdmLevelHierarchy objects from Example 2-4.

Example 2-5 Basic Cube Query Using Source Objects

// Get the SALES measure and the Source for it.
MdmBaseMeasure mdmSales = mdmUnitsCube.findOrCreateBaseMeasure("SALES");
NumberSource sales = (NumberSource)mdmSales.getSource();

// Get the Source objects for the PRODUCT_PRIMARY, CHANNEL_PRIMARY
// and the SHIPMENTS hierarchies.
StringSource prodHier = (StringSource)mdmProdHier.getSource();
 StringSource shipHier = (StringSource)mdmShipHier.getSource();
StringSource chanHier = (StringSource)mdmChanHier.getSource();

// Get the YEAR hierarchy level.
List<MdmHierarchyLevel> hierLevels = mdmCalHier.getLevels();
MdmHierarchyLevel mdmYearHierLevel = null;
for(MdmHierarchyLevel mdmHierLevel : hierLevels)
{
 mdmYearHierLevel = mdmHierLevel;
 if(mdmYearHierLevel.getName().equals("YEAR"))
 {
 break;
 }
}
// Get the Source for the YEAR level of the CALENDAR_YEAR hierarchy.
Source yearLevel = mdmYearHierLevel.getSource();

// Select single values for the hierarchies except for the time hierarchy.
Source prodSel = prodHier.selectValue("PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL");
Source custSel = shipHier.selectValue("SHIPMENTS::TOTAL_CUSTOMER::TOTAL");
Source chanSel = chanHier.selectValue("CHANNEL_PRIMARY::TOTAL_CHANNEL::TOTAL");

// Get the long description attribute for the TIME_AWJ dimension.
MdmBaseAttribute mdmTimeLDAttr = (MdmBaseAttribute)
 mdmTimeDim.getValueDescriptionAttribute();
Source timeLDAttr = mdmTimeLDAttr.getSource();

Source yearsWithLDValue = timeLDAttr.join(yearLevel);

Source result = sales.joinHidden(prodSel)
 .joinHidden(custSel)
 .joinHidden(chanSel)
 .join(yearsWithLDValue);

getContext().commit();
getContext().displayResult(result);

The values of the Cursor for the result Source are the following. The code for formatting the values is not shown. For the complete code for Example 2-4 and Example 2-5, see the BasicCubeViewQuery.java example program.

Year Sales
---- ------------
1998 100870876.58
1999 134109248.15
2000 124173521.55
2001 116931722.03
2002 92515295.02
2003 130276513.86
2004 144290685.55
2005 136986571.96
2006 140138317.39
2007 NA

3 Discovering Metadata

This chapter describes how to connect to an Oracle Database instance and how to discover existing Oracle OLAP metadata objects. It includes the following topics:

	
Connecting to Oracle OLAP

	
Overview of the Procedure for Discovering Metadata

	
Creating an MdmMetadataProvider

	
Getting the MdmSchema Objects

	
Getting the Contents of an MdmSchema

	
Getting the Objects Contained by an MdmPrimaryDimension

	
Getting the Source for a Metadata Object

Connecting to Oracle OLAP

To connect to the Oracle OLAP server in an Oracle Database instance, an OLAP Java API client application uses the Oracle implementation of the Java Database Connectivity (JDBC) API. The Oracle JDBC classes that you use to establish a connection to Oracle OLAP are in the Java archive file ojdbc6.jar. For information about getting that file, see Appendix A, "Setting Up the Development Environment".

Prerequisites for Connecting

Before attempting to connect to the Oracle OLAP server, ensure that the following requirements are met:

	
The Oracle Database instance is running and was installed with the OLAP option.

	
The Oracle Database user ID that you are using for the connection has access to the relational schemas that contain the data.

	
The Oracle JDBC and OLAP Java API jar files are in your application development environment. For information about setting up the required jar files, see Appendix A, "Setting Up the Development Environment".

Establishing a Connection

To connect to the OLAP server, perform the following steps:

	
Create a JDBC connection to the database.

	
Create a DataProvider and a UserSession.

These steps are explained in more detail in the rest of this topic.

Creating a JDBC Connection

One way to create a connection to an Oracle Database instance is to use oracle.jdbc.OracleDataSource and oracle.jdbc.OracleConnection objects. For example, the following code creates an oracle.jdbc.OracleDataSource, sets properties of the object, and then gets a JDBC OracleConnection object from the OracleDataSource.

The values of the properties for the OracleDataSource are from a java.util.Properties object. The url property has the form jdbc:oracle:thin:@serverName:portNumber:sid, where serverName is the hostname of the server on which the Oracle Database instance is running, portNumber is the number of the TCP/IP listener port for the database, and sid is the system identifier (SID) of the database instance.

Example 3-1 Getting a JDBC OracleConnection

oracle.jdbc.OracleConnection conn = null;
try
{
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(props.getProperty("url"));
 ods.setUser(props.getProperty("user"));
 ods.setPassword(props.getProperty("password"));
 conn = (oracle.jdbc.OracleConnection) ods.getConnection();
}
catch(SQLException e)
{
 System.out.println("Connection attempt failed. " + e);
}

In the example, the connection uses the Oracle JDBC thin driver. There are many ways to specify your connection characteristics using the getConnection method. There are also other ways to connect to an Oracle Database instance. For more information about Oracle JDBC connections, see Oracle Database JDBC Developer's Guide.

After you have the OracleConnection object, you can create OLAP Java API DataProvider and UserSession objects.

Creating a DataProvider and a UserSession

The following code creates a DataProvider and a UserSession. The conn object is the OracleConnection from Example 3-1.

Example 3-2 Creating a DataProvider

DataProvider dp = new DataProvider();
try
{
 UserSession session = dp.createSession(conn);
}
catch(SQLException e)
{
 System.out.println("Could not create a UserSession. " + e);
}

Using the DataProvider, you can get the MdmMetadataProvider, which is described in "Creating an MdmMetadataProvider". You use the DataProvider to get the TransactionProvider and to create Source and CursorManager objects as described in Chapter 5, "Understanding Source Objects" and Chapter 6, "Making Queries Using Source Methods".

Closing the Connection and the DataProvider

If you are finished using the OLAP Java API, but you want to continue working in your JDBC connection to the database, then use the close method of your DataProvider to release the OLAP Java API resources.

dp.close(); // dp is the DataProvider

When you have completed your work with the database, use the OracleConnection.close method.

Example 3-3 Closing the Connection

try
{
 conn.close(); // conn is the OracleConnection
}
catch(SQLException e)
{
 System.out.println("Cannot close the connection. " + e);
}

Overview of the Procedure for Discovering Metadata

The OLAP Java API provides access to the data of an analytic workspace or that is in relational structures. This collection of data is the data store for the application.

Potentially, the data store includes all of the subchemas of the MdmRootSchema. However, the scope of the data store that is visible when an application is running depends on the database privileges that apply to the user ID through which the connection was made. A user can see all of the MdmDatabaseSchema objects that exist under the MdmRootSchema, but the user can see the objects that are owned by an MdmDatabaseSchema only if the user has access rights to the metadata objects. For information on granting access rights and on object security, see Oracle OLAP User's Guide.

Purpose of Discovering the Metadata

The metadata objects in the data store help your application to make sense of the data. They provide a way for you to find out what data is available, how it is structured, and what the characteristics of it are.

Therefore, after connecting, your first step is to find out what metadata is available. You can then present choices to the end user about what data to select or calculate and how to display it.

After an application discovers the metadata, it typically goes on to create queries for selecting, calculating, and otherwise manipulating the data. To work with data in these ways, you must get the Source objects from the metadata objects. These Source objects specify the data for querying. For more information on Source objects, see Chapter 5, "Understanding Source Objects".

Steps in Discovering the Metadata

Before investigating the metadata, your application must make a connection to Oracle OLAP. Then, your application might perform the following steps:

	
Create a DataProvider.

	
Get the MdmMetadataProvider from the DataProvider.

	
Get the MdmRootSchema from the MdmMetadataProvider.

	
Get all of the MdmDatabaseSchema objects or get individual ones.

	
Get the MdmCube, MdmDimension, and MdmOrganizationalSchema objects owned by the MdmDatabaseSchema objects.

The next four topics in this chapter describe these steps in detail.

Creating an MdmMetadataProvider

An MdmMetadataProvider gives access to the metadata in a data store by providing the MdmRootSchema. Before you can create an MdmMetadataProvider, you must create a DataProvider as described in Chapter 4, "Creating Metadata and Analytic Workspaces". Example 3-4 creates an MdmMetadataProvider. In the example, dp is the DataProvider.

Example 3-4 Creating an MdmMetadataProvider

MdmMetadataProvider mp = null;
try
{
 mp = (MdmMetadataProvider) dp.getMdmMetadataProvider();
}
catch (Exception e)
{
 println("Cannot get the MDM metadata provider. " + e);
}

Getting the MdmSchema Objects

The Oracle OLAP metadata objects that provide access to the data in a data store are organized by MdmSchema objects. The top-level MdmSchema is the MdmRootSchema. Getting the MdmRootSchema is the first step in exploring the metadata in your data store. From the MdmRootSchema, you can get the MdmDatabaseSchema objects. The MdmRootSchema has an MdmDatabaseSchema for each database user. An MdmDatabaseSchema can have MdmOrganizationalSchema objects that organize the metadata objects owned by the MdmDatabaseSchema.

Example 3-5 demonstrates getting the MdmRootSchema, the MdmDatabaseSchema objects under it, and any MdmOrganizationalSchema objects under them.

Example 3-5 Getting the MdmSchema Objects

private void getSchemas(MdmMetadataProvider mp)
{
 MdmRootSchema mdmRootSchema = (MdmRootSchema)mp.getRootSchema();
 List<MdmDatabaseSchema> dbSchemas = mdmRootSchema.getDatabaseSchemas();
 for(MdmDatabaseSchema mdmDBSchema : dbSchemas)
 {
 println(mdmDBSchema.getName());
 getOrgSchemas(mdmDBSchema);
 }
}

private void getOrgSchemas(MdmSchema mdmSchema)
{
 ArrayList orgSchemaList = new ArrayList();

 if (mdmSchema instanceof MdmDatabaseSchema)
 {
 MdmDatabaseSchema mdmDBSchema = (MdmDatabaseSchema) mdmSchema;
 orgSchemaList = (ArrayList) mdmDBSchema.getOrganizationalSchemas();
 }
 else if (mdmSchema instanceof MdmOrganizationalSchema)
 {
 MdmOrganizationalSchema mdmOrgSchema = (MdmOrganizationalSchema)
 mdmSchema;
 orgSchemaList = (ArrayList) mdmOrgSchema.getOrganizationalSchemas();
 }

 if (orgSchemaList.size() > 0)
 {
 println("The MdmOrganizationalSchema subschemas of "
 + mdmSchema.getName() + " are:");
 Iterator orgSchemaListItr = orgSchemaList.iterator();
 while (orgSchemaListItr.hasNext())
 {
 MdmOrganizationalSchema mdmOrgSchema = (MdmOrganizationalSchema)
 orgSchemaListItr.next();
 println(mdmOrgSchema.getName());
 getOrgSchemas(mdmOrgSchema);
 }
 }
 else
 {
 println(mdmSchema.getName() + " does not have any" +
 " MdmOrganizationalSchema subschemas.");
 }
}

Rather than getting all of the MdmDatabaseSchema objects, you can use the getDatabaseSchema method of the MdmRootSchema to get the schema for an individual user. Example Example 3-6 demonstrates getting the MdmDatabaseSchema for the GLOBAL user.

Example 3-6 Getting a Single MdmDatabaseSchema

MdmDatabaseSchema mdmGlobalSchema = mdmRootSchema.getDatabaseSchema("GLOBAL");

Getting the Contents of an MdmSchema

From an MdmSchema, you can get all of the subschema, MdmCube, MdmPrimaryDimension, and MdmMeasure objects that it contains. Also, the MdmRootSchema has an MdmMeasureDimension that has a List of all of the available MdmMeasure objects.

If you want to display all of the dimensions and methods that are owned by a particular user, then you could get the lists of dimensions and measures from the MdmDatabaseSchema for that user. Example 3-7 gets the dimensions and measures from the MdmDatabaseSchema from Example 3-6. It displays the name of each dimension and measure.

Example 3-7 Getting the Dimensions and Measures of an MdmDatabaseSchema

private void getObjects(MdmDatabaseSchema mdmGlobalSchema)
{
 List dimList = mdmGlobalSchema.getDimensions();
 String objName = mdmGlobalSchema.getName() + " schema";
 getNames(dimList, "dimensions", objName);

 List measList = mdmGlobalSchema.getMeasures();
 getNames(measList, "measures", objName);
}

private void getNames(List objectList, String objTypes, String objName)
{
 println("The " + objTypes + " of the " + objName + " are:");
 Iterator objListItr = objectList.iterator();
 while (objListItr.hasNext())
 {
 MdmObject mdmObj = (MdmObject) objListItr.next();
 println(mdmObj.getName());
 }
}

The output of Example 3-7 is the following.

The dimensions of the GLOBAL schema are:
CHANNEL_AWJ
CUSTOMER_AWJ
PRODUCT_AWJ
TIME_AWJ
The measures of the GLOBAL schema are:
UNIT_COST
UNIT_PRICE
SALES
UNITS
COST

To display just the dimensions and measures associated with an MdmCube, you could use the findOrCreateCube method of an MdmDatabaseSchema to get the cube and then get the dimensions and measures of the cube. Example 3-8 gets an MdmCube from the MdmDatabaseSchema of Example 3-6 and displays the names of the dimensions and measures associated with it using the getNames method of Example 3-7.

Example 3-8 Getting the Dimensions and Measures of an MdmCube

private void getCubeObjects(MdmDatabaseSchema mdmGlobalSchema)
{
 MdmCube mdmUnitsCube = (MdmCube)
 mdmGlobalSchema.findOrCreateCube("PRICE_CUBE_AWJ");
 String objName = mdmUnitsCube.getName() + " cube";
 List dimList = mdmUnitsCube.getDimensions();
 getNames(dimList, "dimensions", objName);

 List<MdmMeasure> measList = mdmUnitsCube.getMeasures();
 getNames(measList, "measures", objName);
}

The output of Example 3-8 is the following.

The dimensions of the PRICE_CUBE_AWJ cube are:
TIME_AWJ
PRODUCT_AWJ
The measures of the PRICE_CUBE_AWJ cube are:
UNIT_COST
UNIT_PRICE

Getting the Objects Contained by an MdmPrimaryDimension

In discovering the metadata objects to use in creating queries and displaying the data, an application typically gets the MdmSubDimension components of an MdmPrimaryDimension and the MdmAttribute objects that are associated with the dimension. This topic demonstrates getting the components and attributes of a dimension.

Getting the Hierarchies and Levels of an MdmPrimaryDimension

An MdmPrimaryDimension has zero or more component MdmHierarchy objects, which you can obtain by calling the getHierarchies method of the dimension. That method returns a List of MdmHierarchy objects. The levels of an MdmPrimaryDimension are represented by MdmDimensionLevel objects.

If an MdmHierarchy is an MdmLevelHierarchy, then it has MdmHierarchyLevel objects that associate MdmDimensionLevel objects with it. You can obtain the MdmHierarchyLevel objects by calling the getHierarchyLevels method of the MdmLevelHierarchy.

Example 3-9 gets an MdmPrimaryDimension from the MdmDatabaseSchema of Example 3-6 and displays the names of the hierarchies and the levels associated with them.

Example 3-9 Getting the Hierarchies and Levels of a Dimension

private void getHierarchiesAndLevels(MdmDatabaseSchema mdmGlobalSchema)
{
 MdmPrimaryDimension mdmCustDim = (MdmPrimaryDimension)
 mdmGlobalSchema.findOrCreateStandardDimension("CUSTOMER_AWJ");
 List<MdmHierarchy> hierList = mdmCustDim.getHierarchies();
 println("The hierarchies of the dimension are:");
 for (MdmHierarchy mdmHier : hierList)
 {
 println(mdmHier.getName());
 if (mdmHier instanceof MdmLevelHierarchy)
 {
 MdmLevelHierarchy mdmLevelHier = (MdmLevelHierarchy) mdmHier;
 List<MdmHierarchyLevel> hierLevelList = mdmLevelHier.getHierarchyLevels();
 println(" The levels of the hierarchy are:");
 for (MdmHierarchyLevel mdmHierLevel : hierLevelList)
 {
 println(" " + mdmHierLevel.getName());
 }
 }
 }
}

The output of Example 3-9 is the following.

The hierarchies of the dimension are:
SHIPMENTS
 The levels of the hierarchy are:
 TOTAL_CUSTOMER
 REGION
 WAREHOUSE
 SHIP_TO
MARKETS
 The levels of the hierarchy are:
 TOTAL_MARKET
 MARKET_SEGMENT
 ACCOUNT
 SHIP_TO

Getting the Attributes for an MdmPrimaryDimension

An MdmPrimaryDimension and the hierarchies and levels of it have associated MdmAttribute objects. You can obtain many of the attributes by calling the getAttributes method of the dimension, hierarchy, or level. That method returns a List of MdmAttribute objects that an application has explicitly added to or specified for the MdmPrimaryDimension. You can obtain specific attributes, such as a short or long description attribute or a parent attribute by calling the appropriate method of an MdmPrimaryDimension or an MdmHierarchy.

Example 3-10 demonstrates getting the MdmAttribute objects for an MdmPrimaryDimension. It also gets the parent attribute separately. The example displays the names of the MdmAttribute objects. The attribute names that end in _LD and _SD are the attributes that are added to the MdmHierarchyLevel objects, as mentioned in "Populating OLAP Views with Hierarchical Attribute Values".

Example 3-10 Getting the MdmAttribute Objects of an MdmPrimaryDimension

private void getAttributes(MdmDatabaseSchema mdmGlobalSchema)
{
 MdmTimeDimension mdmTimeDim = (MdmTimeDimension)
 mdmGlobalSchema.findOrCreateTimeDimension("TIME_AWJ");
 List attrList = mdmTimeDim.getAttributes();
 Iterator attrListItr = attrList.iterator();
 println("The MdmAttribute objects of " + mdmTimeDim.getName() + " are:");
 while (attrListItr.hasNext())
 {
 MdmAttribute mdmAttr = (MdmAttribute) attrListItr.next();
 println(" " + mdmAttr.getName());
 }

 MdmAttribute mdmParentAttr = mdmTimeDim.getParentAttribute();
 println("The parent attribute is " + mdmParentAttr.getName() + ".");
}

The output of Example 3-10 is the following.

The MdmAttribute objects of TIME_AWJ are:
 LONG_DESCRIPTION
 SHORT_DESCRIPTION
 END_DATE
 TIME_SPAN
 TOTAL_TIME_LD
 YEAR_LD
 QUARTER_LD
 MONTH_LD
 TOTAL_TIME_SD
 YEAR_SD
 QUARTER_SD
 MONTH_SD
 TOTAL_TIME_ED
 YEAR_ED
 QUARTER_ED
 MONTH_ED
 TOTAL_TIME_TS
 YEAR_TS
 QUARTER_TS
 MONTH_TS
The parent attribute is PARENT_ATTRIBUTE.

Getting the Source for a Metadata Object

A metadata object represents a set of data, but it does not provide the ability to create queries on that data. The object is informational. It records the existence, structure, and characteristics of the data. It does not give access to the data values.

To access the data values for a metadata object, an application gets the Source object for that metadata object. The Source for a metadata object is a primary Source.

To get the primary Source for a metadata object, an application calls the getSource method of that metadata object. For example, if an application needs to display the quantity of product units sold during the year 1999, then it must use the getSource method of the MdmMeasure for that data, which is mdmUnits in the following example.

Example 3-11 Getting a Primary Source for a Metadata Object

Source units = mdmUnits.getSource();

For more information about getting and working with primary Source objects, see Chapter 5, "Understanding Source Objects".

4 Creating Metadata and Analytic Workspaces

This chapter describes how to create new metadata objects and map them to relational structures or expressions. It describes how to export and import the definitions of the metadata objects to XML templates. It also describes how to associate the objects with an analytic workspace, and how to build the analytic workspace.

This chapter includes the following topics:

	
Overview of Creating and Mapping Metadata

	
Creating an Analytic Workspace

	
Creating the Dimensions, Levels, and Hierarchies

	
Creating Attributes

	
Creating Cubes and Measures

	
Committing Transactions

	
Exporting and Importing XML Templates

	
Building an Analytic Workspace

Overview of Creating and Mapping Metadata

The OLAP Java API provides the ability to create persistent metadata objects. The top-level metadata objects exist in the data dictionary of the Oracle Database instance. The API also provides the ability to create transient metadata objects that exist only for the duration of the session. An application can use both types of metadata objects to create queries that retrieve or otherwise use the data in the data store.

Before an OLAP Java API application can create metadata objects, a database administrator must have prepared the Oracle Database instance. The DBA must have set up permanent and temporary tablespaces in the database to support the creation of Oracle OLAP metadata objects and must have granted the privileges that allow the user of the session to create and manage objects. For information on preparing an Oracle Database instance, see Oracle OLAP User's Guide.

A dimensional metadata model typically includes the objects described in Chapter 2, "Understanding OLAP Java API Metadata". For detailed information on designing a dimensional metadata model, see Oracle OLAP User's Guide.

You implement the dimensional model by creating OLAP Java API metadata objects. You use classes in the oracle.olapi.metadata.mapping package to map the metadata objects to relational source objects and to build analytic workspaces. You use classes in the oracle.olapi.syntax package to specify Expression objects that you use in mapping the metadata. You use classes in the oracle.olapi.metadata.deployment package to deploy the metadata objects in an analytic workspace or in a relational database (ROLAP) organization.

The basic steps for implementing the dimensional model as OLAP Java API objects in an analytic workspace are the following:

	
Create an AW object and MdmPrimaryDimension and MdmCube objects.

	
Deploy the MdmPrimaryDimension and MdmCube objects to the AW.

	
Create MdmDimensionLevel, MdmHierarchy, and MdmAttribute objects for each MdmPrimaryDimension, create MdmHierarchyLevel objects to associate MdmDimensionLevel objects with an MdmHierarchy, and create the MdmMeasure and related objects for the MdmCube objects.

	
Map the metadata objects to the relational sources of the base data.

	
Commit the Transaction, which creates persistent objects in the database.

	
Load data into the objects from the relational sources by building the analytic workspace.

The following topics describe these steps. The examples in this chapter are from the CreateMetadataAndAW.java example program. That program creates some of the same metadata objects as the CreateAndBuildAW.java and SpecifyAWValues.java example programs. The CreateMetadataAndAW program also exports the analytic workspace to an XML template.

Creating an Analytic Workspace

An analytic workspace is a container for dimensional objects. It is represented by the AW class in the oracle.olapi.metadata.deployment package. An analytic workspace is owned by an MdmDatabaseSchema.

Example 4-1 demonstrates getting the MdmDatabaseSchema for the GLOBAL user and creating an AW. For an example that gets the MdmRootSchema, see Chapter 3.

Example 4-1 Creating an AW

private void createAW(MdmRootSchema mdmRootSchema)
{
 MdmDatabaseSchema mdmDBSchema = mdmRootSchema.getDatabaseSchema("GLOBAL");
 aw = mdmDBSchema.findOrCreateAW("GLOBAL_AWJ");
}

Creating the Dimensions, Levels, and Hierarchies

A dimension is a list of unique values that identify and categorize data. Dimensions form the edges of a cube and identify the values in the measures of the cube. A dimension can have one or more levels that categorize the dimension members. It can have one or more hierarchies that further categorize the members. A dimension can also have no levels or hierarchies. However, a dimension must have one or more levels before Oracle OLAP can create a materialized view for it.

A dimension also has attributes that contain information about dimension members. For descriptions of creating attributes, see "Creating Attributes".

This topic describes how to create objects that represent a dimension and the levels and hierarchies of a dimension.

Creating and Mapping Dimensions

An OLAP dimension is represented by the MdmPrimaryDimension class. A dimension is owned by an MdmDatabaseSchema. You create a dimension with the findOrCreateTimeDimension or the findOrCreateStandardDimension method of the MdmDatabaseSchema. You can map a dimension that has no levels to a relational data source by creating a MemberListMap for the dimension.

Example 4-2 creates a standard dimension that has the name CHANNEL_AWJ. The example creates an AWPrimaryDimensionOrganization object to deploy the dimension in an analytic workspace. The mdmDBSchema and aw objects are created by Example 4-1. The last three lines call the methods of Example 4-3, Example 4-4, and Example 4-9, respectively.

Example 4-2 Creating and Deploying an MdmStandardDimension

MdmStandardDimension mdmChanDim =
 mdmDBSchema.findOrCreateStandardDimension("CHANNEL_AWJ");
AWPrimaryDimensionOrganization awChanDimOrg =
 mdmChanDim.findOrCreateAWPrimaryDimensionOrganization(aw);

createAndMapDimensionLevels(mdmChanDim);
createAndMapHierarchies();
commit(mdmChanDim);

Creating and Mapping Dimension Levels

An MdmDimensionLevel represents the members of a dimension that are at the same level. Typically, the members of a level are in a column in a dimension table in the relational source. A MemberListMap associates the MdmDimensionLevel with the relational source.

Example 4-3 creates two MdmDimensionLevel objects for the CHANNEL_AWJ dimension and maps the dimension levels to the key columns of the GLOBAL.CHANNEL_DIM table. The example also maps the long description attributes for the dimension levels to columns of that table. The long description attribute, chanLongDescAttr, is created by Example 4-6.

Example 4-3 Creating and Mapping an MdmDimensionLevel

private ArrayList<MdmDimensionLevel> dimLevelList = new ArrayList();
private ArrayList<String> dimLevelNames = new ArrayList();
private ArrayList<String> keyColumns = new ArrayList();
private ArrayList<String> lDescColNames = new ArrayList();

private void createAndMapDimensionLevels(MdmPrimaryDimension mdmChanDim)
{
 dimLevelNames.add("TOTAL_CHANNEL");
 dimLevelNames.add("CHANNEL");

 keyColumns.add("GLOBAL.CHANNEL_DIM.TOTAL_ID");
 keyColumns.add("GLOBAL.CHANNEL_DIM.CHANNEL_ID");

 lDescColNames.add("GLOBAL.CHANNEL_DIM.TOTAL_DSC");
 lDescColNames.add("GLOBAL.CHANNEL_DIM.CHANNEL_DSC");

 // Create the MdmDimensionLevel and MemberListMap objects.
 int i = 0;
 for(String dimLevelName : dimLevelNames)
 {
 MdmDimensionLevel mdmDimLevel =
 mdmChanDim.findOrCreateDimensionLevel(dimLevelNames.get(i));
 dimLevelList.add(mdmDimLevel);

 // Create a MemberListMap for the dimension level.
 MemberListMap mdmDimLevelMemListMap =
 mdmDimLevel.findOrCreateMemberListMap();
 ColumnExpression keyColExp =
 (ColumnExpression)SyntaxObject.fromSyntax(keyColumns.get(i),
 metadataProvider);
 mdmDimLevelMemListMap.setKeyExpression(keyColExp);
 mdmDimLevelMemListMap.setQuery(keyColExp.getQuery());

 // Create an attribute map for the Long Description attribute.
 AttributeMap attrMapLong =
 mdmDimLevelMemListMap.findOrCreateAttributeMap(chanLongDescAttr);

 // Create an expression for the attribute map.
 Expression lDescColExp =
 (Expression)SyntaxObject.fromSyntax(lDescColNames.get(i),
 metadataProvider);
 attrMapLong.setExpression(lDescColExp);
 i++;
 }
}

Creating and Mapping Hierarchies

An MdmHierarchy represents a hierarchy in the dimensional object model. An MdmHierarchy can be an instance of the MdmLevelHierarchy or the MdmValueHierarchy class. An MdmLevelHierarchy has an ordered list of MdmHierarchyLevel objects that relate MdmDimensionLevel objects to the hierarchy.

Creating and Mapping an MdmLevelHierarchy

Example 4-4 creates a hierarchy for the CHANNEL_AWJ dimension. It creates hierarchy levels for the hierarchy and associates attributes with the hierarchy levels. It also maps the hierarchy levels and the attributes to relational sources. The example uses the ArrayList objects from Example 4-3. It maps the MdmHierarchyLevel objects to the same relational source objects as the MdmDimensionLevel objects are mapped.

Example 4-4 Creating and Mapping MdmLevelHierarchy and MdmHierarchyLevel Objects

private void createAndMapHierarchies()
{
 MdmLevelHierarchy mdmLevelHier =
 mdmChanDim.findOrCreateLevelHierarchy("CHANNEL_PRIMARY");

 // Create the MdmHierarchyLevel and HierarchyLevelMap objects.
 int i = 0;
 for(String dimLevelName : dimLevelNames)
 {
 MdmDimensionLevel mdmDimLevel =
 mdmChanDim.findOrCreateDimensionLevel(dimLevelName);
 MdmHierarchyLevel mdmHierLevel =
 mdmLevelHier.findOrCreateHierarchyLevel(mdmDimLevel);
 HierarchyLevelMap hierLevelMap =
 mdmHierLevel.findOrCreateHierarchyLevelMap();
 ColumnExpression keyColExp =
 (ColumnExpression)SyntaxObject.fromSyntax(keyColumns.get(i),
 metadataProvider);
 hierLevelMap.setKeyExpression(keyColExp);
 hierLevelMap.setQuery(keyColExp.getQuery());
 i++;
 }
}

Creating and Mapping an MdmValueHierarchy

The GLOBAL_AWJ analytic workspace that is used by the examples in this documentation does not have an MdmPrimaryDimension for which an MdmValueHierarchy would be sensible. The sample schema for the user SCOTT has a table that can serve as an example.

The SCOTT sample schema has a table named EMP. That table has columns for employees and for managers. You could create a dimension for employees. You could then create an MdmValueHierarchy in which you map the employee column as the base values for the hierarchy and you map the manager column as the parent relation, as shown in Example 4-5. To be able to create OLAP dimensions, the SCOTT user must be granted the OLAP_USER role and the CREATE SESSION privilege.

In the example, mdmDBSchema is the MdmDatabaseSchema for the SCOTT user, dp is the DataProvider, and mp is the MdmMetadataProvider. The example does not show the code for connecting to the database or getting the DataProvider and creating a UserSession, or getting the MdmMetadataProvider, the MdmRootSchema, or the MdmDatabaseSchema. The code is an excerpt from a class that extends the BaseExample11g example class. That class uses other example classes that have methods for committing the current Transaction and for displaying output. For the complete code, see the CreateValueHierarchy.java example program.

Example 4-5 Creating an MdmValueHierarchy

// Create an analytic workspace object.
AW aw = mdmDBSchema.findOrCreateAW(awName);
// Create a dimension and deploy it to the analytic workspace.
MdmPrimaryDimension mdmEmpDim =
 mdmDBSchema.findOrCreateStandardDimension("EMP_DIM");
AWPrimaryDimensionOrganization awEmpDimOrg =
 mdmEmpDim.findOrCreateAWPrimaryDimensionOrganization(aw);

// Get the EMP table and the Query for the table.
MdmTable empTable = (MdmTable)mdmDBSchema.getTopLevelObject("EMP");
Query empQuery = empTable.getQuery();

// Create a value hierarchy.
MdmValueHierarchy mdmValHier =
 mdmEmpDim.findOrCreateValueHierarchy("EMPVALHIER");
// Create a map for the hierarchy.
SolvedValueHierarchyMap solvedValHierMap =
 mdmValHier.findOrCreateSolvedValueHierarchyMap();
// Specify the Query, the key expression and the parent key expression for
// the hierarchy.
solvedValHierMap.setQuery(empQuery);
Expression keyExp =
 (Expression)SyntaxObject.fromSyntax("SCOTT.EMP.EMPNO", mp);
solvedValHierMap.setKeyExpression(keyExp);
Expression parentExp =
 (Expression)SyntaxObject.fromSyntax("SCOTT.EMP.MGR", mp);
solvedValHierMap.setParentKeyExpression(parentExp);

// Create an attribute that relates a name to each dimension member.
MdmBaseAttribute mdmNameAttr =
 mdmEmpDim.findOrCreateBaseAttribute("EMP_NAME");
SQLDataType sdtVC2 = new SQLDataType("VARCHAR2");
mdmNameAttr.setSQLDataType(sdtVC2)
// Create an attribute map for the attribute.
AttributeMap attrMap =
 solvedValHierMap.findOrCreateAttributeMap(mdmNameAttr);
// Create and set an expression for the attribute map.
Expression exp = (Expression)
 SyntaxObject.fromSyntax("SCOTT.EMP.ENAME", mp);
attrMap.setExpression(exp);
mdmValHier.addAttribute(mdmNameAttr);

// Commit the Transaction before building the analytic workspace.
// The getContext method of BaseExample11g returns a Context11g object,
// which has a method that commits the Transaction.
getContext().commit();
BuildItem bldEmpDim = new BuildItem(mdmEmpDim);
ArrayList<BuildItem> items = new ArrayList();
items.add(bldEmpDim);
BuildProcess bldProc = new BuildProcess(items);

// Execute the build.
try
{
 dp.executeBuild(bldProc, 0);
}
catch (Exception ex)
{
 println("Could not execute the BuildProcess.");
 println("Caught: " + ex);
}

//Get the Source objects for the dimension, the hierarchy, and the attribute.
Source empDim = mdmEmpDim.getSource();
Source valHier = mdmValHier.getSource();
Source empNameAttr = mdmNameAttr.getSource();
// Get the parent attribute and get the Source for it.
MdmAttribute mdmParentAttr = mdmEmpDim.getParentAttribute();
Source parentAttr = mdmParentAttr.getSource();

Source parentByEmpByName = parentAttr.join(valHier.join(empNameAttr));
// Sort the values in ascending order by employee number of the managers.
Source sortedParentByEmpByName = parentByEmpByName.sortAscending();

// Commit the Transaction before creating a Cursor.
getContext().commit();
// The displayResult method of the Context11g object creates a Cursor and
// displays the results.
println("The managers of the employees are:");
getContext().displayResult(sortedParentByEmpByName);

The output of Example 4-5 is the following. It shows the employee name, the employee ID and then the employee ID of the manager. The results are sorted by manager. The employee King does not have a parent and is the highest member of the hierarchy so the manager value for King is null, which appears as NA in the output.

The managers of the employees are:
1: ((SCOTT,EMPVALHIER::7788),EMPVALHIER::7566)
2: ((FORD,EMPVALHIER::7902),EMPVALHIER::7566)
3: ((ALLEN,EMPVALHIER::7499),EMPVALHIER::7698)
4: ((WARD,EMPVALHIER::7521),EMPVALHIER::7698)
5: ((MARTIN,EMPVALHIER::7654),EMPVALHIER::7698)
6: ((TURNER,EMPVALHIER::7844),EMPVALHIER::7698)
7: ((JAMES,EMPVALHIER::7900),EMPVALHIER::7698)
8: ((MILLER,EMPVALHIER::7934),EMPVALHIER::7782)
9: ((ADAMS,EMPVALHIER::7876),EMPVALHIER::7788)
10: ((JONES,EMPVALHIER::7566),EMPVALHIER::7839)
11: ((BLAKE,EMPVALHIER::7698),EMPVALHIER::7839)
12: ((CLARK,EMPVALHIER::7782),EMPVALHIER::7839)
13: ((SMITH,EMPVALHIER::7369),EMPVALHIER::7902)
14: ((KING,EMPVALHIER::7839),NA)

Creating Attributes

Attributes contain information about dimension members. An MdmBaseAttribute represents values that are based on relational source tables. An MdmDerivedAttribute represents values that Oracle OLAP derives from characteristics or relationships of the dimension members. For example, the getParentAttribute method of an MdmPrimaryDimension returns an MdmDerivedAttribute that records the parent of each dimension member.

You create a base attribute for a dimension with the findOrCreateBaseAttribute method. You can specify the data type of the attribute, although for many attributes Oracle OLAP can determine the data type from the attribute mapping. With the setAllowAutoDataTypeChange method, you can specify that Oracle OLAP determine the data type. Some attributes are used by the dimension in certain ways, such as to provide descriptions of dimension members or to provide date information that can be used in calculations. For example, you can specify an attribute for descriptions with the setValueDescriptionAttribute method of the dimension and you can specify an attribute that contains end date time period values with the setEndDateAttribute method of an MdmTimeDimension.

Example 4-6 creates a long description attribute for the CHANNEL_AWJ dimension and specifies it as the attribute that contains descriptions of the members of the dimension. The example specifies that Oracle OLAP automatically determines a SQL data type for the attribute.

Example 4-6 Creating an MdmBaseAttribute

private MdmBaseAttribute chanLongDescAttr = null;
private void createLongDesciptionAttribute(MdmPrimaryDimension mdmChanDim)
{
// Create the long description attribute and allow the automatic changing of
// the SQL data type.
chanLongDescAttr = mdmChanDim.findOrCreateBaseAttribute("LONG_DESCRIPTION");
chanLongDescAttr.setAllowAutoDataTypeChange(true));

// Specifies that the attribute contains descriptions of the dimension members.
mdmChanDim.setValueDescriptionAttribute(chanLongDescAttr);
}

An attribute can have different values for the members of different levels of the dimension. In that case the attribute has an attribute mapping for each level. Example 4-3 creates an AttributeMap for the long description attribute for each dimension level by calling the findOrCreateAttributeMap method of the MemberListMap for each dimension level. It specifies a different column for each attribute map.

Creating Cubes and Measures

A cube in a dimensional object model is represented by the MdmCube class. An MdmCube owns one or more MdmMeasure objects. It has a list of the MdmPrimaryDimension objects that dimension the measures.

An MdmCube has the following objects associated with it.

	
MdmPrimaryDimension objects that specify the dimensionality of the cube.

	
MdmMeasure objects that contain data that is identified by the dimensions.

	
A CubeOrganization that specifies how the cube stores and manages the measure data.

	
CubeMap objects that associate the cube with relational sources.

	
A ConsistentSolveSpecification that specifies how to calculate, or solve, the aggregate level data.

Creating Cubes

This topic has an example that creates a cube and some of the objects associated with it. Example 4-7 creates an MdmCube that has the name PRICE_CUBE_AWJ. The example creates an AWCubeOrganization object to deploy the cube in an analytic workspace. The mdmDBSchema and aw objects are created by Example 4-1 and the leafLevel ArrayList is created in Example 4-4. The mdmTimeDim and mdmProdDim objects are dimensions of time periods and product categories. The CreateAndBuildAW program creates those dimensions. The last lines of the example call the methods in Example 4-8 and Example 4-9, respectively.

Example 4-7 Creating and Mapping an MdmCube

private MdmCube createAndMapCube(MdmPrimaryDimension mdmTimeDim,
 MdmPrimaryDimension mdmProdDim)
{
 MdmCube mdmPriceCube = mdmDBSchema.findOrCreateCube("PRICE_CUBE_AWJ");
 // Add dimensions to the cube.
 mdmPriceCube.addDimension(mdmTimeDim);
 mdmPriceCube.addDimension(mdmProdDim);

 AWCubeOrganization awCubeOrg =
 mdmPriceCube.findOrCreateAWCubeOrganization(aw);
 awCubeOrg.setMVOption(AWCubeOrganization.NONE_MV_OPTION);
 awCubeOrg.setMeasureStorage(AWCubeOrganization.SHARED_MEASURE_STORAGE);
 awCubeOrg.setCubeStorageType("NUMBER");

 AggregationCommand aggCommand = new AggregationCommand("AVG");
 ArrayList<ConsistentSolveCommand> solveCommands = new ArrayList();
 solveCommands.add(aggCommand);
 ConsistentSolveSpecification conSolveSpec =
 new ConsistentSolveSpecification(solveCommands);
 mdmPriceCube.setConsistentSolveSpecification(conSolveSpec);

 // Create and map the measures of the cube.
 createAndMapMeasures(mdmPriceCube);
 // Commit the Transaction.
 commit(mdmPriceCube);
}

Creating and Mapping Measures

This topic has an example that creates measures for a cube and maps the measures to fact tables in the relational database. The example uses the cube created by Example 4-7.

Example 4-8 Creating and Mapping Measures

private void createAndMapMeasures(MdmCube mdmPriceCube)
{
 ArrayList<MdmBaseMeasure> measures = new ArrayList();
 MdmBaseMeasure mdmCostMeasure =
 mdmPriceCube.findOrCreateBaseMeasure("UNIT_COST");
 MdmBaseMeasure mdmPriceMeasure =
 mdmPriceCube.findOrCreateBaseMeasure("UNIT_PRICE");
 mdmCostMeasure.setAllowAutoDataTypeChange(true);
 mdmPriceMeasure.setAllowAutoDataTypeChange(true);
 measures.add(mdmCostMeasure);
 measures.add(mdmPriceMeasure);
 MdmTable priceCostTable =
 (MdmTable)mdmDBSchema.getTopLevelObject("PRICE_FACT");
 Query cubeQuery = priceCostTable.getQuery();
 ArrayList<String> measureColumns = new ArrayList();
 measureColumns.add("GLOBAL.PRICE_FACT.UNIT_COST");
 measureColumns.add("GLOBAL.PRICE_FACT.UNIT_PRICE");
 CubeMap cubeMap = mdmPriceCube.findOrCreateCubeMap();
 cubeMap.setQuery(cubeQuery);

 // Create MeasureMap objects for the measures of the cube and
 // set the expressions for the measures. The expressions specify the
 // columns of the fact table for the measures.
 int i = 0;
 for(MdmBaseMeasure mdmBaseMeasure : measures)
 {
 MeasureMap measureMap = cubeMap.findOrCreateMeasureMap(mdmBaseMeasure);
 Expression expr =
 (Expression)SyntaxObject.fromSyntax(measureColumns.get(i),
 metadataProvider);
 measureMap.setExpression(expr);
 i++;
 }

 // Create CubeDimensionalityMap objects for the dimensions of the cube and
 // set the expressions for the dimensions. The expressions specify the
 // columns of the fact table for the dimensions.

 ArrayList<String> factColNames = new ArrayList();
 factColNames.add("GLOBAL.PRICE_FACT.MONTH_ID");
 factColNames.add("GLOBAL.PRICE_FACT.ITEM_ID");
 List<MdmDimensionality> mdmDimltys = mdmPriceCube.getDimensionality();
 for (MdmDimensionality mdmDimlty: mdmDimltys)
 {
 CubeDimensionalityMap cubeDimMap =
 cubeMap.findOrCreateCubeDimensionalityMap(mdmDimlty);
 MdmPrimaryDimension mdmPrimDim =
 (MdmPrimaryDimension)mdmDimlty.getDimension();
 String columnMap = null;
 if (mdmPrimDim.getName().startsWith("TIME"))
 {
 columnMap = factColNames.get(0);
 i = 0;
 }
 else// (mdmPrimDim.getName().startsWith("PRODUCT"))
 {
 columnMap = factColNames.get(1);
 i = 1;
 }
 Expression expr =
 (Expression)SyntaxObject.fromSyntax(columnMap,metadataProvider);
 cubeDimMap.setExpression(expr);

 // Associate the leaf level of the hierarchy with the cube.
 MdmHierarchy mdmDefHier = mdmPrimDim.getDefaultHierarchy();
 MdmLevelHierarchy mdmLevHier = (MdmLevelHierarchy)mdmDefHier;
 List<MdmHierarchyLevel> levHierList = mdmLevHier.getHierarchyLevels();
 // The last element in the list must be the leaf level of the hierarchy.
 MdmHierarchyLevel leafLevel = levHierList.get(levHierList.size() - 1);
 cubeDimMap.setMappedDimension(leafLevel);
 }
}

Committing Transactions

To save a metadata object as a persistent entity in the database, you must commit the Transaction in which you created the object. You can commit a Transaction at any time. Committing the Transaction after creating a top-level object and the objects that it owns is a good practice.

Example 4-9 gets the TransactionProvider from the DataProvider for the session and commits the current Transaction.

Example 4-9 Committing Transactions

private void commit(MdmSource mdmSource)
{
 try
 {
 System.out.println("Committing the transaction for " +
 mdmSource.getName() + ".");
 (dp.getTransactionProvider()).commitCurrentTransaction();
 }
 catch (Exception ex)
 {
 System.out.println("Could not commit the Transaction. " + ex);
 }
}

Exporting and Importing XML Templates

You can save the definition of a metadata object by exporting the object to an XML template. Exporting an object saves the definition of the object and the definitions of any objects that it owns. For example, if you export an AW object to XML, then the XML includes the definitions of any MdmPrimaryDimension and MdmCube objects that the AW owns, and the MdmAttribute, MdmMeasure and other objects owned by the dimensions and cubes.

Example 4-10 exports metadata objects to an XML template and saves it in a file. The code excerpt at the beginning of the example creates a List of the objects to export. It adds to the List the aw object, which is the analytic workspace created by Example 4-1. It then calls the exportToXML method.

Example 4-10 Exporting to an XML Template

 ... // In some method.
List objectsToExport = new ArrayList();
objectsToExport.add(aw);
exportToXML(objectsToExport, "globalawj.xml");
...
public void exportToXML(List objectsToExport, String fileName)
{
 try
 {
 PrintWriter writer = new PrintWriter(new FileWriter(filename));
 mp.exportFullXML(writer, // mp is the MdmMetadataProvider
 objectsToExport,
 null, // No Map for renaming objects
 false); // Do not include the owner name
 writer.close();
 }
 catch (IOException ie)
 {
 ie.printStackTrace();
 }
}

You can import a metadata object definition as an XML template. After importing, you must build the object.

Building an Analytic Workspace

After creating and mapping metadata objects, or importing the XML definition of an object, you must perform the calculations that the objects specify and load the resulting data into physical storage structures.

Example 4-11 creates BuildItem objects for the dimensions and cubes of the analytic workspace. It creates a BuildProcess that specifies the BuildItem objects and passes the BuildProcess to the executeBuild method of the DataProvider for the session.

Example 4-11 Building an Analytic Workspace

BuildItem bldChanDim = new BuildItem(mdmChanDim);
BuildItem bldProdDim = new BuildItem(mdmProdDim);
BuildItem bldCustDim = new BuildItem(mdmCustDim);
BuildItem bldTimeDim = new BuildItem(mdmTimeDim);
BuildItem bldUnitsCube = new BuildItem(mdmUnitsCube);
BuildItem bldPriceCube = new BuildItem(mdmPriceCube);
ArrayList<BuildItem> items = new ArrayList();
items.add(bldChanDim);
items.add(bldProdDim);
items.add(bldCustDim);
items.add(bldTimeDim);
items.add(bldUnitsCube);
items.add(bldPriceCube);
BuildProcess bldProc = new BuildProcess(items);
try
{
 dp.executeBuild(bldProc, 0);
}
catch (Exception ex)
{
 System.out.println("Could not execute the BuildProcess." + ex);
}

5 Understanding Source Objects

This chapter describes Source objects, which you use to specify a query. With a Source, you specify the data that you want to retrieve from the data store and the analytical or other operations that you want to perform on the data. Chapter 6, "Making Queries Using Source Methods", provides examples of using Source objects. Chapter 10, "Creating Dynamic Queries", describes using Template objects to make modifiable queries.

This chapter includes the following topics:

	
Overview of Source Objects

	
Kinds of Source Objects

	
Characteristics of Source Objects

	
Inputs and Outputs of a Source

	
Describing Parameterized Source Objects

Overview of Source Objects

You use Source objects to create a query that specifies the data that you want to retrieve from the database. As a query, a Source is similar to a SQL SELECT statement.

To create a query, you typically use the classes in the oracle.olapi.metadata.mdm package to get MdmSource objects that represent OLAP metadata objects. From an MdmSource object, you can get a Source object. You can also create other kinds of Source objects with methods of a DataProvider. You can then use these Source objects to create a query. To retrieve the data specified by the query, you create a Cursor for the Source.

With the methods of a Source, you can specify selections of dimension members, attribute values, or measure values. You can also specify operations on the elements of the Source, such as mathematical calculations, comparisons, and ordering, adding, or removing elements of a query.

The Source class has a few basic methods and many shortcut methods that use one or more of the basic methods. The most complex basic methods are the join(Source joined, Source comparison, int comparisonRule, boolean visible) method and the recursiveJoin(Source joined, Source compariso4n, Source parent, int comparisonRule, boolean parentsFirst, boolean parentsRestrictedToBase, int maxIterations, boolean visible) method. The many other signatures of the join and recursiveJoin methods are shortcuts for certain operations of the basic methods.

In this chapter, the information about the join method applies equally to the recursiveJoin method, except where otherwise noted. With the join method you can relate the elements of one Source to those of another Source by joining a Source with an input to a Source that matches with that input. For example, to specify the dimension members that are required to retrieve the data of a measure that has the dimension as an input, you use a join method to relate the dimension members to the measure. The join method and the inputs of a Source are described in "Inputs and Outputs of a Source".

A Source has certain characteristics, such as a type and a data type, and it can have one or more inputs or outputs. This chapter describes these concepts. It also describes the different kinds of Source objects and how you get them, and the join method and other Source methods and how you use those methods to specify a query.

Kinds of Source Objects

The kinds of Source objects that you use to specify data and to perform analysis, and the ways that you get them, are the following:

	
Primary Source objects, which are returned by the getSource method of an MdmSource object such as an MdmDimension or an MdmDimensionedObject. A primary Source provides access to the data that the MdmSource represents. Getting primary Source objects is usually the first step in creating a query. You then typically select elements from the primary Source objects, thereby producing derived Source objects.

	
Derived Source objects, which you get by calling some of the methods of a Source object. Methods such as join return a new Source that is derived from the Source on which you call the method. All queries on the data store, other than a simple list of values specified by the primary Source for an MdmDimension, are derived Source objects.

	
Fundamental Source objects, which are returned by the getSource method of a FundamentalMetadataObject. These Source objects represent the OLAP Java API data types.

	
List or range Source objects, which are returned by the createConstantSource, createListSource, or createRangeSource methods of a DataProvider. Typically, you use this kind of Source as the joined or comparison parameter to a join method.

	
Empty, null, or void Source objects. The empty and void Source objects are returned by the getEmptySource or getVoidSource method of a DataProvider, and the null Source object is returned by the nullSource method of a Source. The empty Source has no elements. The void Source and a null Source each has one element that has the value of null. The difference between the void Source and a null Source is that the type of the void Source is the FundamentalMetadataObject for the Value data type and the type of a null Source is the Source whose nullSource method returned it. Typically, you use these kinds of Source objects as the joined or comparison parameter to a join method.

	
Dynamic Source objects, which are returned by the getSource method of a DynamicDefinition. A dynamic Source is usually a derived Source. It is generated by a Template, which you use to create a dynamic query that you can revise after interacting with an end user.

	
Parameterized Source objects, which are returned by the createSource methods of a Parameter. Like a list or range Source, you use a parameterized Source as a parameter to the join method. Unlike a list or range Source, however, you can change the value that the Parameter represents after the join operation and thereby change the selection that the derived Source represents. You can create a Cursor for that derived Source and retrieve the results of the query. You can then change the value of the Parameter, and, without having to create a new Cursor for the derived Source, use that same Cursor to retrieve the results of the modified query.

The Source class has the following subclasses:

	
BooleanSource

	
DateSource

	
NumberSource

	
StringSource

These subclasses have different data types and implement Source methods that require those data types. Each subclass also implements methods unique to it, such as the implies method of a BooleanSource or the indexOf method of a StringSource.

Characteristics of Source Objects

A Source has a data type, a type, and an identifier (ID), and all Source objects except the empty Source have one or more elements. This topic describes these concepts. Some Source objects have one or more inputs or outputs. Those complex concepts are discussed in "Inputs and Outputs of a Source".

Elements and Values of a Source

All Source objects, except the empty Source, have one or more elements. An element of a Source has a value, which can be null. For example, the Source for the MdmPrimaryDimension object for the CHANNEL_AWJ dimension has four elements. The values of those elements are the unique values of the members of the dimension, which are the following.

CHANNEL_PRIMARY::CHANNEL::TOTAL
CHANNEL_PRIMARY::CHANNEL::CAT
CHANNEL_PRIMARY::CHANNEL::DIR
CHANNEL_PRIMARY::CHANNEL::INT

Data Type of a Source

The FundamentalMetadataObject class represents the data type of the values of the elements of an MdmSource. The data type of a Source is represented by a fundamental Source. For example, a BooleanSource has elements that have Java boolean values. The data type of a BooleanSource is the fundamental Source that represents OLAP Java API Boolean values.

To get the fundamental Source that represents the data type of a Source, call the getDataType method of the Source. You can also get a fundamental Source by calling the getSource method of a FundamentalMetadataObject.

The data type for a primary Source is related to the SQL data type of the associated metadata object. For example, an MdmBaseAttribute that has a SQL data type of VARCHAR2(30) would produce a Source whose data type is the fundamental Source that represents OLAP Java API String values. The following code gets that fundamental Source.

fmp.getStringDataType().getSource(); // fmp is the FundamentalMetadataProvider.

A typical use of a Source for a data type is as the comparison Source for a join or a recursive join operation. As such it represents the set of all values of that data type. For examples of the use of the getDataType method, see Example 6-3, Example 6-5, and Example 6-11.

Type of a Source

Along with a data type, a Source has a type, which is the Source from which the elements of the Source are drawn. The type of a Source determines whether the join method can match the Source with the input of another Source. The only Source that does not have a type is the fundamental Source for the OLAP Java API Value data type, which represents the set of all values, and from which all other Source objects ultimately descend. You can find the type by calling the getType method of a Source.

The type of a fundamental Source is the data type of the Source. The type of a list or range Source is the data type of the values of the elements of the list or range Source.

The type of a primary Source is one of the following:

	
The fundamental Source that represents the data type of the values of the elements of the primary Source. For example, the type of the Source returned by the getSource method of a typical numeric MdmMeasure is the fundamental Source that represents the set of all OLAP Java API number values.

	
The Source for the object that contains the primary Source. For example, the type of the Source returned by the getSource method of an MdmLevelHierarchy is the Source for the MdmPrimaryDimension that contains the hierarchy.

The type of a derived Source is one of the following:

	
The base Source, which is the Source whose method returned the derived Source. A Source returned by the alias, distinct, extract, join, recursiveJoin, or value methods, or one of their shortcuts, has the base Source as the type.

	
A fundamental Source. The type of the Source returned by methods such as position and count is the fundamental Source for the OLAP Java API Integer data type. The type of the Source returned by methods that make comparisons, such as eq, le, and so on, is the fundamental Source for the Boolean data type. The type of the Source returned by methods that perform aggregate functions, such as the NumberSource methods total and average, is a fundamental Source that represents the function.

A derived Source that has the base Source as the type is a subtype of the Source from which it is derived. A derived Source that has a fundamental Source as the type is a subtype of the fundamental Source. You can use the isSubtypeOf method to determine if a Source is a subtype of another Source.

For example, in Example 5-1 the myList object is a list Source. The example uses myList to select values from prodHier, a Source for an MdmLevelHierarchy of the MdmPrimaryDimension for the PRODUCT_AWJ dimension. In the example, dp is the DataProvider.

Example 5-1 Using the isSubtypeOf Method

Source myList = dp.createListSource(new String[] {
 "PRODUCT_PRIMARY::FAMILY::LTPC",
 "PRODUCT_PRIMARY::FAMILY::DTPC",
 "PRODUCT_PRIMARY::FAMILY::ACC",
 "PRODUCT_PRIMARY::FAMILY::MON"});
Source prodSel = prodHier.selectValues(myList);
if (prodSel.isSubtypeOf(prodHier))
 println("prodSel is a subtype of prodHier.");
else
 println("prodSel is not a subtype of prodHier.");

Because prodSel is a subtype of prodHier, the condition in the if statement is true and the example displays the following:

prodSel is a subtype of prodHier.

The type of myList is the fundamental String Source. The type of prodHier is the Source for the PRODUCT_AWJ dimension. The type of prodSel is prodHier because the elements of prodSel are derived from the elements of prodHier.

The supertype of a Source is the type of the type of a Source, and so on, up through the types to the Source for the fundamental Value data type. For example, the fundamental Value Source is the type of the fundamental String Source, which is the type of prodHier, which is the type of prodSel. The fundamental Value Source and the fundamental String Source are both supertypes of prodSel. The prodSel Source is a subtype of prodHier, and of the fundamental String Source, and of the fundamental Value Source.

Source Identification and SourceDefinition of a Source

A Source has an identification, an ID, which is a String that uniquely identifies it during the current connection to the database. You can get the identification by calling the getID method of a Source. For example, the following code gets the identification of the Source for the MdmPrimaryDimension for the PRODUCT_AWJ dimension and displays the value.

println("The Source ID of prodDim is " + prodDim.getID());

The preceding code displays the following:

The Source ID of prodDim is Hidden..GLOBAL.PRODUCT_AWJ

Each Source also has a SourceDefinition object, which records information about the Source. Oracle OLAP uses this information internally. For example, the SourceDefinition of a derived Source records the parameters of the join operation that produced the Source, such as the base Source, the joined Source, the comparison Source, the comparison rule, and the value of the visible parameter.

The DynamicDefinition class is a subclass of SourceDefinition. An OLAP Java API client application uses the DynamicDefinition of a Template to get the dynamic Source of the Template.

Inputs and Outputs of a Source

An input of a Source indicates that the elements of the Source have a relation to those of another Source. An output of a Source contains elements from which values of the Source with the output are derived. A Source with one or more outputs is somewhat like an array of arrays.

A Source can have inputs and it can have outputs. The inputs and the outputs of a Source are other Source objects.

The inputs and outputs of a base Source influence the elements of a Source that you derive from that base Source. To derive a Source, you use methods of the base Source. The derived Source can have outputs or inputs or both or neither, depending on the method and the parameters of the method.

Some Source methods, such as the value and position methods, return a Source that has an input. The join and recursiveJoin methods can return a Source that has an output. If the join operation involves a Source with an input and a Source that matches with that input, then the input acts as a filter in producing the elements of the derived Source.

This topic describes the join method, the concepts of outputs and inputs, and the matching of inputs. It provides examples of producing Source objects that have outputs, Source objects that have inputs, and join operations that match an input with a Source.

Describing the join Method

With the join method, you join the elements of one Source with those of another Source to produce a derived Source. The derived Source could have inputs or outputs. The elements of the derived Source, and whether it has any inputs or outputs, depend on the values of the parameters that you pass to the join method.

The full signature of the join method is the following.

Source join(Source joined,
 Source comparison,
 int comparisonRule,
 boolean visible)

The Source on which you call the join method is the base of the join operation. The parameters of the method are the following.

Describing the joined Parameter

The joined parameter is a Source object. The join method joins the elements of the base Source and the elements of the joined Source, with results that are determined by the values of the other join parameters. If the values of the joined Source are not related to the values of the base Source, that is, if neither the joined Source nor the base Source matches with an input of the other, then the join produces a Cartesian product of the elements of the base and the joined Source objects. The examples in the "Outputs of a Source" topic demonstrate this kind of join operation.

If the values of the joined Source are related to the values of the base Source, that is, if either the joined Source or the base Source is an input of the other, then the elements of the derived Source are the result of the matching of the input. The examples in "Matching a Source with an Input" demonstrate this kind of join operation.

Describing the comparison Parameter

The comparison parameter is another Source object. The join operation compares the values of the elements of the comparison Source to the values of the joined Source. The values that are the same in the joined and comparison objects participate in the join operation or are removed from participation, depending on the value of the comparisonRule parameter.

Describing the comparisonRule Parameter

The value of the comparisonRule parameter specifies which values of the joined Source participate in the join operation. The comparisonRule value also determines the sort order of the participating values. The comparison rule is one of the static constant fields of the Source class. The basic comparison rules are the following.

	
COMPARISON_RULE_SELECT, which specifies that only the elements of the joined Source that are also in the comparison Source participate in the join operation.

	
COMPARISON_RULE_REMOVE, which specifies that only the elements of the joined Source that are not in the comparison Source participate in the join operation.

The other comparison rules are all select operations that sort the resulting values in various ways. Those rules are the following.

	
COMPARISON_RULE_ASCENDING

	
COMPARISON_RULE_ASCENDING_NULLS_FIRST

	
COMPARISON_RULE_ASCENDING_NULLS_LAST

	
COMPARISON_RULE_DESCENDING

	
COMPARISON_RULE_DESCENDING_NULLS_FIRST

	
COMPARISON_RULE_DESCENDING_NULLS_LAST

Describing the visible Parameter

The visible parameter is a boolean value that specifies whether the joined Source appears as an output of the Source that is derived by the join operation. If the value of the visible parameter is true, then the derived Source has an output that contains the elements drawn from the joined Source. If the value is false, then the derived Source does not have an output for the joined Source.

Outputs of a Source

The join method returns a derived Source that has the values of the elements of the base Source that are specified by the parameters of the method. Those values are the base values of the derived Source.

If the value of the visible parameter of the join method is true, then the joined Source becomes an output of the derived Source. The elements of the derived Source then have the values of the output and the base values, as specified by the other parameters of the join operation.

A derived Source can have from zero to many outputs. A Source that is an output can itself have outputs. You can get the outputs of a Source by calling the getOutputs method, which returns a List of Source objects.

The examples in this "Outputs of a Source" topic all have simple join operations that produce Source objects that have one or more outputs. Because none of the Source objects in the join operations have inputs, the values of the derived Source objects produced by the join operations are the Cartesian products of the base and the joined Source objects.

Very different results occur from a join operation that involves a Source that has an input and a Source that matches with that input. For examples of Source objects with inputs and the matching of inputs, see "Inputs of a Source" and "Matching a Source with an Input".

Producing a Source with an Output

Example 5-2 uses the simplest signature of the join method to produce a Source that has one output. The example creates a list Source, letters, that has three elements, the values of which are A, B, and C. It also creates a list Source, names, that has three elements, the values of which are Stephen, Leo, and Molly.

Example 5-2 A Simple Join That Produces a Source with an Output

Source letters = dp.createListSource(new String[] {"A", "B", "C"});
Source names = dp.createListSource(new String[] {"Stephen", "Leo", "Molly"});
Source lettersWithNames = letters.join(names);

// Oracle OLAP translates this shortcut signature of the join method into the
// following full signature, where dp is the DataProvider for the session.
// Source letters.join(names,
// dp.getEmptySource(),
// Source.COMPARISON_RULE_REMOVE,
// true);

The letters.join(names) operation joins the elements of the base Source, letters, and the joined Source, names. Because the comparison Source has no elements, the join operation does not remove any of the elements that are in the joined Source in producing the derived Source. (The comparison Source is the empty Source that is returned by the dp.getEmptySource() parameter of the full join signature shown in the example.) The resulting derived Source, lettersWithNames, is the Cartesian product of the elements of the base letters and the joined names. Because both letters and names have three elements, the number of elements in lettersWithNames is nine.

Because the visible parameter of letters.join(names) is true, the derived Source has an output. Because no elements were removed from the joined Source, the derived Source has the values of all of the elements of the joined Source.

A Cursor for a Source has the same structure as the Source. A Cursor for the lettersWithNames Source has a ValueCursor for the base values of the derived Source and a ValueCursor for the output values. The following table presents the values of the ValueCursor objects. The table includes headings that are not in the ValueCursor objects.

Output Values Base Values
 Stephen A
 Stephen B
 Stephen C
 Leo A
 Leo B
 Leo C
 Molly A
 Molly B
 Molly C

Using COMPARISON_RULE_SELECT

Example 5-3 demonstrates using a comparison Source that has values and the comparison rule COMPARISON_RULE_SELECT. The example uses the letter and names Source objects from Example 5-2 and adds the someNames Source. It uses someNames as the comparison Source. The output of the Source derived from the join operation has only the names that are in both the joined Source and the comparison Source.

Example 5-3 A Simple Join That Selects Elements of the Joined Source

Source someNames = dp.createListSource(new String[] {"Stephen", "Molly"});
Source lettersAndSelectedNames =
 letters.join(names, someNames, Source.COMPARISON_RULE_SELECT, true);

A Cursor for the lettersAndSelectedNames Source has the values specified by the Source. The following table presents the Cursor values and has headings added.

Output Values Base Values
 Stephen A
 Stephen B
 Stephen C
 Molly A
 Molly B
 Molly C

Using COMPARISON_RULE_REMOVE

Example 5-4 demonstrates using a comparison Source that has values and the comparison rule COMPARISON_RULE_REMOVE. That comparison rule removes from participation in the join operation those values that are the same in the joined and in the comparison Source objects. The output of the derived Source therefore has only the name from the joined Source that is not in the comparison Source.

The example has the same base, joined, and comparison Source objects as Example 5-3.

Example 5-4 A Simple Join That Removes Elements of the Joined Source

Source lettersAndNamesWithoutRemovedNames =
 letters.join(names,
 someNames,
 Source.COMPARISON_RULE_REMOVE,
 true);

A Cursor for the lettersAndNamesWithoutRemovedNames Source has the values specified by the Source. The following table presents the values and has headings added.

Output Values Base Values
 Leo A
 Leo B
 Leo C

Producing a Source with Two Outputs

If you join a Source to a Source that has an output, and if the visible parameter is true, then the join operation produces a Source that has the joined Source as an additional output. The additional output becomes the first output, as shown in Example 5-5.

Example 5-5 uses the Source objects from Example 5-3 and creates another list Source, colors, that contains the names of two colors. The example joins the colors Source to the lettersWithSelectedNames Source to produce the lettersWithSelectedNamesAndColors Source.

The lettersWithSelectedNames Source has names as an output. The lettersWithSelectedNamesAndColors Source has both colors and names as outputs. The first output is colors and the second output is names.

Example 5-5 A Simple Join That Produces a Source with Two Outputs

Source colors = dp.createListSource(new String[] {"Green", "Maroon"});

Source lettersWithSelectedNames =
 letters.join(names,
 someNames,
 Source.COMPARISON_RULE_SELECT,
 true);
Source lettersWithSelectedNamesAndColors =
 lettersWithSelectedNames.join(colors);

A Cursor for the lettersWithSelectedNamesAndColors Source has the values shown in the following table. The table has headings added.

Output 1 Values Output 2 Values Base Values
 Green Stephen A
 Green Stephen B
 Green Stephen C
 Green Molly A
 Green Molly B
 Green Molly C
 Maroon Stephen A
 Maroon Stephen B
 Maroon Stephen C
 Maroon Molly A
 Maroon Molly B
 Maroon Molly C

Hiding an Output

If the visible parameter of a join method is false, then the joined Source participates in the join operation but does not appear as an output of the Source derived by the join. Example 5-6 uses the joinHidden shortcut method to join the lettersWithSelectedNames and the colors Source objects from Example 5-5. The example includes in a comment the full join signature for the joinHidden shortcut.

Example 5-6 A Simple Join That Hides An Output

Source lettersWithSelectedNamesAndHiddenColors =
 lettersWithSelectedNames.joinHidden(colors);

// The full signature of the joinHidden shortcut method is
// Source result = base.join(joined,
// dp.getEmptySource(),
// Source.COMPARISON_RULE_REMOVE,
// false);
// So if Source base = lettersWithSelectedNames and
// Source joined = colors, then the result Source is the same as the
// lettersWithSelectedNamesAndHiddenColors Source.

A Cursor for the lettersWithSelectedNamesAndHiddenColors Source has the values shown in the following table. The table has headings added.

Note that the derived lettersWithSelectedNamesAndHiddenColors Source still has twelve elements, even though the values for the colors Source do not appear as output values. The derived Source has one set of the six values of the lettersWithSelectedNames Source for each value of the hidden colors Source.

Example 5-5 displays the following output.

Output Values Base Values
 Stephen A
 Stephen B
 Stephen C
 Molly A
 Molly B
 Molly C
 Stephen A
 Stephen B
 Stephen C
 Molly A
 Molly B
 Molly C

Inputs of a Source

The examples in the "Outputs of a Source" topic all produce derived Source objects that have elements that are the Cartesian product of the unrelated base and joined Source objects. While such an operation can be useful, a more powerful aspect of Source objects is the ability to relate the elements of one Source to another Source. When such a relationship exists, you can derive other Source objects that are the result of operations between the related elements. For example, you can derive a Source that contains only selected elements of another Source. This relationship between elements is represented by the input of a Source.

A Source with an input is an incomplete specification of data. The input represents the type of Source that can have the elements that a join operation requires to complete the data specification. Before you can retrieve the data with a Cursor, you must match the input with a Source that has the elements that complete the specification.

You match an input with a Source by using the join or recursiveJoin method. The match occurs between the base Source and the joined Source.

The matching of an input acts as a filter so that the Source derived by the join operation has only the elements of the base Source whose values are related to those of the elements of the joined Source. The rules related to matching a Source with an input are described in "Matching a Source with an Input". That topic has examples that produce derived Source objects that are the result of the matching of an input.

A Source can have from zero to many inputs. You can get all of the inputs of a Source by calling the getInputs method.

Some primary Source objects have inputs. You can derive a Source that has an input by using some methods of the Source class.

Primary Source Objects with Inputs

The primary Source objects for the MdmDimensionedObject subclasses MdmAttribute and MdmMeasure have inputs. The primary Source for an MdmAttribute has one input. The primary Source for an MdmMeasure has one or more inputs.

The inputs of an MdmAttribute or an MdmMeasure are the Source objects for the MdmPrimaryDimension objects that dimension the attribute or measure. To get the value of an attribute or a measure, you must join the attribute or measure with a Source that contains the related dimension members. The join operation matches the input of the attribute or measure with the Source that contains the dimension members. Example 5-7 matches the input of an attribute with the dimension of that attribute. Example 5-8 matches the inputs of a measure with the dimensions of that measure.

Deriving a Source with an Input

Some Source methods always return a Source that has an input. The Source returned by the extract, position, or value method has the base Source as an input. You can use these methods to produce a Source whose elements are derived, or filtered, from the elements of another Source.

The value method returns a Source that has the elements of the base Source and has the base Source as an input. You typically use the Source returned by the value method as the base or joined Source of a join method, or sometimes as the comparison Source. Several examples in this chapter and in Chapter 6 use the value method.

The position method returns a Source that has the position of each element of the base Source and that has the base Source as an input. For an example of using the position method, see Example 6-4.

You use the extract method when elements of the Source objects that you want to join have Source objects as values. For examples of using the extract method, see Example 5-12, Example 6-8, Example 6-13, and Example 6-14.

Type of Inputs

The input of a Source derived by the position or value method, and an input intrinsic to an MdmDimensionedObject, are regular inputs. A regular input relates the elements of the Source with the input to the elements of the Source that matches with the input. You can get the regular inputs by calling the getRegularInputs method.

The input of a Source returned by the extract method is an extraction input. You can get the extraction inputs by calling the getExtractionInputs method.

Matching a Source with an Input

In a join operation, the matching of a Source with an input occurs only between the base Source and the joined Source. A Source matches with an input if one of the following conditions is true.

	
The Source is the same object as the input or it is a subtype of the input.

	
The Source has an output that is the same object as the input or the output is a subtype of the input.

The join operation looks for the conditions in the order shown in the preceding list. It searches the list of outputs of the Source recursively, including any outputs of an output, looking for a match with the input. The search ends with the first matching Source. An input can match with only one Source.

When a Source with an input is joined to a Source that matches with the input, the derived Source returned by the join method has the elements of the base that are related to the elements specified by the parameters of the method. The derived Source does not have the input.

Matching a Source with an input does not affect the outputs of the base Source or the joined Source. If a base Source has an output that matches with the input of the joined Source, then the resulting Source does not have the input but it does have the output. If the base Source or the joined Source in a join operation has an input that is not matched in the operation, then the unmatched input is an input of the resulting Source.

The comparison Source of a join method does not participate in the input matching. If the comparison Source has an input, then that input is not matched and the Source returned by the join method has that same input.

Matching the Input of the Source for an MdmAttribute

Example 5-7 demonstrates the joining of the Source for an MdmBaseAttribute to the Source for an MdmPrimaryDimension. The example gets the local value attribute from the MdmPrimaryDimension for the CHANNEL_AWJ dimension. The Source for the attribute, locValAttr, has the Source for the MdmPrimaryDimension as an input.

In the example, locValAttr is the base Source of the join operation and chanDim is the joined Source. Because chanDim is an instance of the Source for the MdmPrimaryDimension for the CHANNEL_AWJ dimension, chanDim matches with the input of locValAttr. The result of the join is dimMembersWithLocalValue, which has chanDim as an output and does not have any inputs.

The locValAttr Source has four elements because each of the four members of the CHANNEL_AWJ dimension has a different local value. The Source derived by the join operation, dimMembersWithLocalValue, has four elements. The value of each element is the dimension member and the related attribute value. The dimension member is a value from the output and the attribute value is from the base.

Example 5-7 demonstrates matching the input of a base Source with the joined Source. In the example, mdmDBSchema is the MdmDatabaseSchema for the GLOBAL schema.

Example 5-7 Getting an Attribute for a Dimension Member

MdmStandardDimension mdmChanDim =
 mdmDBSchema.findOrCreateStandardDimension("CHANNEL_AWJ");
Source chanDim = mdmChanDim.getSource();
Source locValAttr = mdmChanDim.getLocalValueAttribute().getSource();
Source dimMembersWithLocalValue = locValAttr.join(chanDim);

A Cursor for the dimMembersWithLocalValue Source has the values shown in the following table. The output values are the unique dimension member values derived from the joined Source, chanDim. The base values are derived from the base Source, locValAttr. The table has headings added.

 Output Values Base Values
CHANNEL_PRIMARY::TOTAL_CHANNEL::TOTAL TOTAL
CHANNEL_PRIMARY::CHANNEL::CAT CAT
CHANNEL_PRIMARY::CHANNEL::DIR DIR
CHANNEL_PRIMARY::CHANNEL::INT INT

Matching the Inputs of a Measure

Example 5-8 demonstrates getting values from a measure. The example gets the MdmCube that contains the UNIT_PRICE measure and gets the MdmBaseMeasure for the measure from that cube. The cube, and the measures of the cube, are dimensioned by the PRODUCT_AWJ and TIME_AWJ dimensions. The example gets the MdmPrimaryDimension objects for those dimensions and gets the Source objects for those metadata objects.

The Source for the measure, unitPrice, has the Source objects for the two MdmPrimaryDimension objects as inputs. The example joins the Source for the measure with the Source objects for the dimensions. The join operations match the inputs of the measure with the Source objects for the dimensions.

The example first joins the Source for the PRODUCT_AWJ dimension to the Source for the measure. That unitPrice.join(prodDim) operation derives a Source that has base values from unitPrice and has prodDim as an output. It also has the Source for the TIME_AWJ dimension as an input. The next join operation joins the Source derived by unitPrice.join(prodDim) with timeDim, the Source for the TIME_AWJ dimension. That join operation matches the input of the Source derived by unitPrice.join(prodDim) with timeDim.

The Source derived by the second join operation is pricesByProductAndTime. That Source has no inputs and has the Source objects for the PRODUCT_AWJ and TIME_AWJ dimensions as outputs. A Cursor for pricesByProductAndTime contains the price of each product value for every time value.

The example finally calls the count method of pricesByProductAndTime. That method returns the NumberSource numPricesByProductAndTime, which contains the number of elements of the pricesByProductAndTime Source. A Cursor for the numPricesByProductAndTime Source contains the value 4998, which is the number of measure values for the product and time tuples.

Example 5-8 demonstrates matching the inputs of the base Source with the joined Source. In the example, mdmDBSchema is the MdmDatabaseSchema for the GLOBAL schema.

Example 5-8 Getting Measure Values

MdmCube mdmPriceCube =
 mdmDBSchema.findOrCreateCube("PRICE_CUBE_AWJ");
MdmBaseMeasure mdmUnitPrice =
 mdmPriceCube.findOrCreateBaseMeasure("UNIT_PRICE");
MdmStandardDimension mdmProdDim =
 mdmDBSchema.findOrCreateStandardDimension("PRODUCT_AWJ");
MdmTimeDimension mdmTimeDim =
 mdmDBSchema.findOrCreateTimeDimension("TIME_AWJ");

Source prodDim = mdmProdDim.getSource();
Source timeDim = mdmTimeDim.getSource();
Source unitPrice = mdmUnitPrice.getSource();

Source pricesByProductAndTime = unitPrice.join(prodDim).join(timeDim);
NumberSource numPricesByProductAndTime = pricesByProductAndTime.count();

To produce a Source that contains only the measure values for certain products and times, you need to join the Source for the measure with Source objects that specify the dimension values that you want. You can produce such a selection by using methods of the primary Source for the dimension. One means of producing a Source that represents a selection of values of a Source is to use the value method.

Using the value Method to Derive a Source with an Input

In Example 5-9, the lettersValue Source is returned by the letters.value() method. The lettersValue Source has letters as an input. The input represents a relation between the values of the Source with the input and the values of the Source that matches with the input.

In the example, the join operation has letters as the base Source and lettersValue as the joined Source. The base Source, letters, matches with the input of lettersValue, which is also letters, because they are the same. The Source produced by the join operation, lettersByLettersValue has lettersValue as an output. It does not have an input. Each element of lettersByLettersValue has a base value from letters and the related value from lettersValue.

Example 5-9 Using the value Method to Relate a Source to Itself

Source letters = dp.createListSource(new String[] {"A", "B", "C"});
Source lettersValue = letters.value();
Source lettersByLettersValue = letters.join(lettersValue);

A Cursor for the lettersByLettersValue Source has the values shown in the following table. The table has headings added.

Output Values Base Values
 A A
 B B
 C C

Because lettersByLettersValue contains only those values of the base and joined Source objects that are related, the base values of the Cursor for lettersByLettersValue Source are the same as the output values. If the base and joined Source objects had been unrelated, as in letters.join(letters), then the Source produced by the join operation would contain the Cartesian product of the base and joined Source objects.

Using the value Method to Select Values of a Source

By using the value method, you can derive a Source that is a selection of the elements of another Source. Example 5-10 selects two elements from the Source for the PRODUCT_AWJ dimension from Example 5-7. The example demonstrates a base Source matching with the input of the joined Source.

Example 5-10 Using the value Method to Select Elements of a Source

Source productsToSelect = dp.createListSource(new String[]
 {"PRODUCT_PRIMARY::ITEM::ENVY EXE",
 "PRODUCT_PRIMARY::ITEM::ENVY STD"});
Source selectedProducts = prodDim.join(prodDim.value(),
 productsToSelect,
 Source.COMPARISON_RULE_SELECT,
 false); // Hide the output.

A Cursor for the productsToSelect Source has the following values.

PRODUCT_PRIMARY::ITEM::ENVY EXE
PRODUCT_PRIMARY::ITEM::ENVY STD

A Cursor for the selectedProducts Source has the following values.

PRODUCT_PRIMARY::ITEM::ENVY EXE
PRODUCT_PRIMARY::ITEM::ENVY STD

The two Source objects contain the same values. However, the types of the objects are different. The type of the productsToSelect Source is the Source for the FundamentalMetadataObject for the String data type. The type of the selectedProducts Source is prodDim because selectedProducts is derived from prodDim. Therefore, selectedProducts is a subtype of prodDim and as such it can match with a Source that has the Source for the PRODUCT_AWJ dimension as an input, as shown in Example 5-11.

Example 5-11 selects elements from the Source objects for two dimensions and then gets the measure values for the selected dimension members. Example 5-11 uses the same dimensions and measure as in Example 5-8. In Example 5-11, however, the Source objects that match with the inputs of the Source for the measure are not the Source objects for the dimensions. Instead they are subtypes of the Source objects for the dimensions. The subtypes specify selected members of the dimensions. The Source that is derived by joining the measure with the dimensions, pricesForSelectedProductsAndTimes, has six elements, which specify only the measure values for the two products for the three time values, instead of the 4998 elements of the pricesByProductAndTime Source in Example 5-8. In Example 5-11, mdmDBSchema is the MdmDatabaseSchema for the GLOBAL schema.

Example 5-11 Using Derived Source Objects to Select Measure Values

// Create lists of product and time dimension members.
Source productsToSelect = dp.createListSource(new String[]
 {"PRODUCT_PRIMARY::ITEM::ENVY EXE",
 "PRODUCT_PRIMARY::ITEM::ENVY STD"});
Source timesToSelect = dp.createListSource(new String[]
 {"CALENDAR_YEAR::MONTH::2000.01",
 "CALENDAR_YEAR::MONTH::2001.01",
 "CALENDAR_YEAR::MONTH::2002.01"});
// Get the PRICE_CUBE_AWJ cube.
MdmCube mdmPriceCube = mdmDBSchema.findOrCreateCube("PRICE_CUBE_AWJ");
// Get the UNIT_PRICE measure from the cube.
MdmBaseMeasure mdmUnitPrice =
 mdmPriceCube.findOrCreateBaseMeasure("UNIT_PRICE");
// Get the PRODUCT_AWJ and TIME_AWJ dimensions.
MdmStandardDimension mdmProdDim =
 mdmDBSchema.findOrCreateStandardDimension("PRODUCT_AWJ");
MdmTimeDimension mdmTimeDim =
 mdmDBSchema.findOrCreateTimeDimension("TIME_AWJ");
// Get the Source objects for the dimensions and the measure.
Source prodDim = mdmProdDim.getSource();
Source timeDim = mdmTimeDim.getSource();
Source unitPrice = mdmUnitPrice.getSource();
// Using the value method, derive Source objects that specify the selected
// dimension members.
Source selectedProducts = prodDim.join(prodDim.value(),
 productsToSelect,
 Source.COMPARISON_RULE_SELECT,
 false);
Source selectedTimes = timeDim.join(timeDim.value(),
 timesToSelect,
 Source.COMPARISON_RULE_SELECT,
 false);
// Derive a Source that specifies the unitPrice values for the selected products
// and times.
Source pricesForSelectedProductsAndTimes = unitPrice.join(selectedProducts)
 .join(selectedTimes);

A Cursor for the pricesForSelectedProductsAndTimes Source has the values shown in the following table. The table has headings added.

 Month Product Price
----------------------------- ------------------------------- -------
CALENDAR_YEAR::MONTH::2000.01 PRODUCT_PRIMARY::ITEM::ENVY EXE 3358.02
CALENDAR_YEAR::MONTH::2000.01 PRODUCT_PRIMARY::ITEM::ENVY STD 3000.11
CALENDAR_YEAR::MONTH::2001.01 PRODUCT_PRIMARY::ITEM::ENVY EXE 3223.28
CALENDAR_YEAR::MONTH::2001.01 PRODUCT_PRIMARY::ITEM::ENVY STD 2426.07
CALENDAR_YEAR::MONTH::2002.01 PRODUCT_PRIMARY::ITEM::ENVY EXE 3008.95
CALENDAR_YEAR::MONTH::2002.01 PRODUCT_PRIMARY::ITEM::ENVY STD 2140.71

Using the extract Method to Combine Elements of Source Objects

The extract method derives a Source that has the base Source as an input. You use the extract method when the values of the elements of a Source are Source objects themselves.

Example 5-12 uses the selectValues method to derive two selections of elements from a StringSource for the PRODUCT_AWJ dimension. The selectValues method is a shortcut for the full join signature of the methods in Example 5-10 and Example 5-11 that produce the selectedProducts and selectedTimes Source objects.

Example 5-12 creates a list Source, sourcesToCombine, that has the two derived Source objects as element values. The sourcesToCombine.extract() method produces sourcesToCombineWithAnInput, which is a Source that has sourcesToCombine as an input. The join operation sourcesToCombineWithAnInput.joinHidden(sourcesToCombine) matches the input of sourcesToCombineWithAnInput with the joined sourcesToCombine and produces combinedSources, which has no inputs or outputs. A shortcut for this combining of Source elements is the appendValues method.

Example 5-12 Extracting Elements of a Source

MdmStandardDimension mdmProdDim =
 mdmDBSchema.findOrCreateStandardDimension("PRODUCT_AWJ");
StringSource prodDim = (StringSource) mdmProdDim.getSource();
Source productsToSelect = prodDim.selectValues(new String[]
 {"PRODUCT_PRIMARY::ITEM::ENVY ABM",
 "PRODUCT_PRIMARY::ITEM::ENVY EXE",
 "PRODUCT_PRIMARY::ITEM::ENVY STD"});
Source moreProductsToSelect = prodDim.selectValues(new String[]
 {"PRODUCT_PRIMARY::ITEM::SENT FIN",
 "PRODUCT_PRIMARY::ITEM::SENT MM",
 "PRODUCT_PRIMARY::ITEM::SENT STD"});
Source sourcesToCombine =
 dp.createListSource(new Source[] {productsToSelect, moreProductsToSelect});
Source sourcesToCombineWithAnInput = sourcesToCombine.extract();
Source combinedProducts =
 sourcesToCombineWithAnInput.joinHidden(sourcesToCombine);

A Cursor for the combinedProducts Source has the following values.

PRODUCT_PRIMARY::ITEM::ENVY ABM
PRODUCT_PRIMARY::ITEM::ENVY EXE
PRODUCT_PRIMARY::ITEM::ENVY STD
PRODUCT_PRIMARY::ITEM::SENT FIN
PRODUCT_PRIMARY::ITEM::SENT MM
PRODUCT_PRIMARY::ITEM::SENT STD

Describing Parameterized Source Objects

Parameterized Source objects provide a way of specifying a query and retrieving different result sets for the query by changing the set of elements specified by the parameterized Source. You create a parameterized Source with a createSource method of the Parameter. The Parameter supplies the value that the parameterized Source specifies.

Example 5-13 in this topic is a very simple demonstration of using a Parameter object. A typical use of a Parameter is to specify the page edges of a cube, as shown in Example 6-9. Another use of a Parameter is to fetch from the server only the set of elements that you currently need. Example 6-15 demonstrates using Parameter objects to fetch different sets of elements.

When you create a Parameter object, you supply an initial value for the Parameter. You then create the parameterized Source using the Parameter. You include the parameterized Source in specifying a query. You create a Cursor for the query. You can change the value of the Parameter with the setValue method, which changes the set of elements that the query specifies. Using the same Cursor, you can then retrieve the new set of values.

Example 5-13 demonstrates the use of a Parameter and a parameterized Source to specify a member in a dimension. The example gets the MdmStandardDimension for the PRODUCT_AWJ dimension and gets the Source for the MdmStandardDimension cast as a StringSource.

The example creates a StringParameter object that has a dimension member as the initial value. It then creates a parameterized Source, paramProdSel, by using the createSource method of the StringParameter. Next it uses paramProdSel as the comparison Source in a join operation that selects the dimension member.

The example gets the Source for the local value attribute of the dimension. It joins that Source, locValAttr, with paramProdSel. That join operation produces the dimMemberWithLocalValue Source.

The example creates a Cursor for dimMemberWithLocalValue and displays the value of the Cursor. After resetting the Cursor position and changing the value of the prodParam StringParameter, the example displays the value of the Cursor again.

The dp object is the DataProvider. The getContext method gets a Context11g object that has a method that commits the current Transaction and a method that displays the values of a Cursor.

Example 5-13 Using a Parameterized Source to Change a Dimension Selection

MdmStandardDimension mdmProdDim =
 mdmDBSchema.findOrCreateStandardDimension("PRODUCT_AWJ");
StringSource prodDim = (StringSource) mdmProdDim.getSource();

StringParameter prodParam =
 new StringParameter(dp, "PRODUCT_PRIMARY::FAMILY::LTPC");
Source prodParamSrc = prodParam.createSource();
Source paramProdSel = prodDim.join(prodDim.value(), prodParamSrc);

Source locValAttr = mdmProdDim.getLocalValueAttribute().getSource();
Source dimMemberWithLocalValue = locValAttr.join(paramProdSel);

// Commit the Transaction.
getContext().commit();

// Create a Cursor for the Source.
CursorManager cursorMngr = dp.createCursorManager(dimMemberWithLocalValue);
Cursor cursor = cursorMngr.createCursor();

// Display the value of the Cursor.
getContext().displayCursor(cursor);

// Change the product parameter value.
prodParam.setValue("PRODUCT_PRIMARY::FAMILY::DTPC");

// Reset the Cursor position to 1
cursor.setPosition(1);

// Display the value of the Cursor again.
getContext().displayCursor(cursor);

The Cursor for dimMemberWithLocalValue displays the following.

PRODUCT_PRIMARY::FAMILY::LTPC,LTPC

After changing the value of the StringParameter and resetting the position of the Cursor, the Cursor for dimMemberWithLocalValue displays the following.

PRODUCT_PRIMARY::FAMILY::DTPC,DTPC

6 Making Queries Using Source Methods

You create a query by producing a Source that specifies the data that you want to retrieve and any operations that you want to perform on that data. To produce the query, you begin with the primary Source objects that represent the metadata of the measures and the dimensions and their attributes that you want to query. Typically, you use the methods of the primary Source objects to derive a number of other Source objects, each of which specifies a part of the query, such as a selection of dimension members or an operation to perform on the data. You then join the Source objects that specify the data and the operations that you want. The result is one Source that represents the query. You can then retrieve the data by creating a Cursor for the Source.

This chapter briefly describes the various kinds of Source methods, and discusses some of them in greater detail. It also discusses how to make some typical OLAP queries using these methods and provides examples of some of them.

This chapter includes the following topics:

	
Describing the Basic Source Methods

	
Using the Basic Methods

	
Using Other Source Methods

Describing the Basic Source Methods

The Source class has many methods that return a derived Source. The elements of the derived Source result from operations on the base Source, which is the Source whose method returns the derived Source. Only a few methods perform the most basic operations of the Source class.

Many other methods of the Source class use one or more of the basic methods to perform operations such as selecting elements of the base Source by value or by position, or sorting elements. Many of the examples in this chapter and in Chapter 5, "Understanding Source Objects", use some of these methods. Other Source methods get objects that have information about the Source, such as the getID, getInputs, and getType methods, perform comparisons, such as the ge and gt methods, or convert the values of the Source from one data type to another, such as the toDoubleSource method.

This topic describes the basic Source methods and provides some examples of their use. Table 6-1 lists the basic Source methods.

Table 6-1 The Basic Source Methods

	Method	Description
	
alias

	
Returns a Source that has the same elements as the base Source, but has the base Source as the type.

	
distinct

	
Returns a Source that has the same elements as the base Source, except that any elements that are duplicated in the base appear only once in the derived Source.

	
join

	
Returns a Source that has the elements of the base Source that are specified by the joined, comparison, and comparisonRule parameters of the method call. If the visible parameter is true, then the joined Source is an output of the resulting Source.

	
position

	
Returns a Source that has the positions of the elements of the base Source, and that has the base Source as an input.

	
recursiveJoin

	
Similar to the join method, except that this method, in the Source that it returns, orders the elements of the Source hierarchically by parent-child relationships.

	
value

	
Returns a Source that has the same elements as the base Source, but that has the base Source as an input.

Using the Basic Methods

This topic provides examples of using some of the basic methods.

Using the alias Method

You use the alias method to control the matching of a Source to an input. For example, if you want to find out if the measure values specified by a member of a dimension of the measure are greater than the measure values specified by the other members of the same dimension, then you need to match the inputs of the measure twice in the same join operation. To do so, you can derive two Source objects that are aliases for the same dimension, make them inputs of two Source objects that are derived from the measure, join each derived measure Source to the associated aliased dimension Source objects, and then compare the results.

Example 6-1 performs such an operation. It produces a Source that specifies whether the number of units sold for each value of the CHANNEL_AWJ dimension is greater than the number of units sold for the other values of the CHANNEL_AWJ dimension.

The example joins units, which is the Source for a measure, to Source objects that are selections of single values of three of the dimensions of the measure to produce unitsSel. The unitsSel Source specifies the units elements for the dimension values that are specified by the timeSel, custSel, and prodSel objects, which are outputs of unitsSel. The unitsSel Source has the Source for CHANNEL_AWJ dimension as an input.

The timeSel, custSel, and prodSel Source objects specify single values from hierarchies of the TIME_AWJ, CUSTOMER_AWJ, and PRODUCT_AWJ dimensions, respectively. The timeSel value is CALENDAR_YEAR::MONTH::2001.01, which identifies the month January, 2001, the custSel value is SHIPMENTS::SHIP_TO::BUSN WRLD SJ, which identifies the Business World San Jose customer, and the prodSel value is PRODUCT_PRIMARY::ITEM::ENVY ABM, which identifies the Envoy Ambassador portable PC.

The example next creates two aliases, chanAlias1 and chanAlias2, for chanHier, which is the Source for the CHANNEL_PRIMARY hierarchy of the CHANNEL_AWJ dimension. It then produces unitsSel1 by joining unitsSel with the Source returned by chanAlias1.value(). The unitsSel1 Source has the elements and outputs of unitsSel and it has chanAlias1 as an input. Similarly, the example produces unitsSel2, which has chanAlias2 as an input.

The example uses the gt method of unitsSel1, which determines whether the values of unitsSel1 are greater than the values of unitsSel2. The final join operations match chanAlias1 with the input of unitsSel1 and match chanAlias2 with the input of unitsSel2.

Example 6-1 Controlling Input-with-Source Matching with the alias Method

Source unitsSel = units.join(timeSel).join(custSel).join(prodSel);
Source chanAlias1 = chanHier.alias();
Source chanAlias2 = chanHier.alias();
NumberSource unitsSel1 = (NumberSource)
 unitsSel.join(chanAlias1.value());
NumberSource unitsSel2 = (NumberSource)
 unitsSel.join(chanAlias2.value());
Source result = unitsSel1.gt(unitsSel2)
 .join(chanAlias1) // Output 2, column
 .join(chanAlias2); // Output 1, row;

The result Source specifies the query, "Are the units sold values of unitsSel1 for the channel values of chanAlias1 greater than the units sold values of unitsSel2 for the channel values of chanAlias2?" Because result is produced by the joining of chanAlias2 to the Source returned by unitsSel1.gt(unitsSel2).join(chanAlias1), chanAlias2 is the first output of result, and chanAlias1 is the second output of result.

A Cursor for the result Source has as values the boolean values that answer the query. The values of the first output of the Cursor are the channel values specified by chanAlias2 and the values of the second output are the channel values specified by chanAlias1.

The following is a display of the values of the Cursor formatted as a crosstab with headings added. The column edge values are the values from chanAlias1, and the row edge values are the values from chanAlias2. The values of the crosstab cells are the boolean values that indicate whether the units sold value for the column channel value is greater than the units sold value for the row channel value. For example, the crosstab values in the first column indicate that the units sold value for the column channel value Total Channel is not greater than the units sold value for the row Total Channel value but it is greater than the units sold value for the Direct Sales, Catalog, and Internet row values.

 ----------------- chanAlias1 ----------------
chanAlias2 TotalChannel Catalog Direct Sales Internet
------------ ------------ ------- ------------ --------
TotalChannel false false false false
Catalog true false false false
Direct Sales true true false false
Internet true true true false

Using the distinct Method

You use the distinct method to produce a Source that does not have any duplicated values, as shown in Example 6-2. The example joins two selections of dimension members. Some dimension members exist in both selections. The example uses the distinct method to produce a Source that contains only unique dimension members, with no duplicated values.

The example gets the MdmStandardDimension object for the CUSTOMER_AWJ dimension and gets the MdmLevelHierarchy object for the MARKETS hierarchy of that dimension. It gets the StringSource object, mktHier, for the MdmLevelHierarchy. It then uses the selectValues method of mktHier to produce two selections of members of the hierarchy, customersToSelect and moreCustomersToSelect. Two of the members of customersToSelect are also present in moreCustomersToSelect.

The example uses the appendValues method to combine the elements of customersToSelect and moreCustomersToSelect in the combinedCustomers Source. Finally, the example uses the distinct method of combinedCustomers, which returns a Source, distinctCombinedCustomers, that has only the distinct members of the hierarchy.

Example 6-2 Using the distinct Method

MdmStandardDimension mdmCustDim =
 mdmDBSchema.findOrCreateStandardDimension("CUSTOMER_AWJ");
MdmLevelHierarchy mdmMktHier =
 mdmCustDim.findOrCreateLevelHierarchy("MARKETS");
StringSource mktHier = (StringSource)mdmMktHier.getSource();

Source customersToSelect =
 mktHier.selectValues(new String[] {"MARKETS::SHIP_TO::KOSH ENT BOS",
 "MARKETS::SHIP_TO::KOSH ENT TOK",
 "MARKETS::SHIP_TO::KOSH ENT WAN"});
Source moreCustomersToSelect =
 mktHier.selectValues(new String[] {"MARKETS::SHIP_TO::KOSH ENT BOS",
 "MARKETS::SHIP_TO::KOSH ENT TOK",
 "MARKETS::SHIP_TO::BUSN WRLD NY",
 "MARKETS::SHIP_TO::BUSN WRLD SJ"});
Source combinedCustomers =
 customersToSelect.appendValues(moreCustomersToSelect);

Source distinctCombinedCustomers = combinedCustomers.distinct();

A Cursor for the combinedCustomers Source has the following values:

MARKETS::SHIP_TO::KOSH ENT BOS
MARKETS::SHIP_TO::KOSH ENT TOK
MARKETS::SHIP_TO::KOSH ENT WAN
MARKETS::SHIP_TO::KOSH ENT BOS
MARKETS::SHIP_TO::KOSH ENT TOK
MARKETS::SHIP_TO::BUSN WRLD NY
MARKETS::SHIP_TO::BUSN WRLD SJ

A Cursor for the distinctCombinedCustomers Source has the following values:

MARKETS::SHIP_TO::KOSH ENT BOS
MARKETS::SHIP_TO::KOSH ENT TOK
MARKETS::SHIP_TO::KOSH ENT WAN
MARKETS::SHIP_TO::BUSN WRLD NY
MARKETS::SHIP_TO::BUSN WRLD SJ

Using the join Method

As described in Chapter 5, "Understanding Source Objects", you use the join method to produce a Source that has the elements of the base Source that are determined by the joined, comparison, and comparisonRule parameters of the method. The visible parameter determines whether the joined parameter Source is an output of the Source produced by the join operation. You also use the join method to match a Source with an input of the base or joined parameter Source.

Most of the examples in this chapter use one or more signatures of the join method, as do many of the examples in Chapter 5. Example 6-3 uses the full join signature and the simplest join signature. In the example, the full join signature demonstrates the use of COMPARISON_RULE_DESCENDING as the comparisonRule parameter.

Example 6-3 uses the following Source objects.

	
prodSelWithShortDescr, which is the Source produced by joining the short description attribute of the PRODUCT_AWJ dimension with the Source for the FAMILY hierarchy level of the PRODUCT_PRIMARY hierarchy of the dimension.

	
salesMeasure, which is the Source for the SALES measure of the UNITS_CUBE_AWJ cube.

	
timeSelWithShortDescr, which is the Source produced by joining the short description attribute of the TIME_AWJ dimension with the Source for a selected member of the CALENDAR_YEAR hierarchy of the dimension.

	
custSelWithShortDescr, which is the Source produced by joining the short description attribute of the CUSTOMER_AWJ dimension with the Source for a selected member of the SHIPMENTS hierarchy of the dimension.

	
chanSelWithShortDescr, which is the Source produced by joining the short description attribute of the CHANNEL_AWJ dimension with the Source for a selected member of the CHANNEL_PRIMARY hierarchy of the dimension.

The first join operation uses the full signature of the join method with prodSelWithShortDescr as the base Source, salesMeasure as the joined Source, the Source for the Number data type as the comparison Source, and COMPARISON_RULE_DESCENDING as the comparison rule. The Source returned by that join operation has the product family level members and related product short description values as base values and an output that has the sales amounts in descending order.

The next three join operations join the single member selections of the other three dimensions of the measure. The result Source specifies the product family level members in descending order of sales amounts for the month of May, 2001 for all customers and all channels.

Example 6-3 Using COMPARISON_RULE_DESCENDING

Source result = prodSelWithShortDescr.join(salesMeasure,
 salesMeasure.getDataType(),
 Source.COMPARISON_RULE_DESCENDING,
 true)
 .join(timeSelWithShortDescr)
 .join(custSelWithShortDescr)
 .join(chanSelWithShortDescr);

A Cursor for the result Source has the following values, displayed as a table. The table includes only the short value descriptions of the hierarchy members and the sales amount values, and has headings and formatting added.

Total Channel
Total Customer
MAY-01

Total Sales Amounts Product Family
------------------- -----------------
 3,580,239.72 Desktop PCs
 2,508,560.92 Portable PCs
 891,807.30 CD/DVD
 632,376.84 Modems/Fax
 444,444.38 Memory
 312,389.39 Accessories
 291,510.88 Monitors
 222,995.92 Operating Systems
 44,479.32 Documentation

Using the position Method

You use the position method to produce a Source that has the positions of the elements of the base and has the base as an input. Example 6-4 uses the position method in producing a Source that specifies the selection of the first and last members of the levels of a hierarchy of the TIME_AWJ dimension.

In the example, mdmTimeDim is the MdmPrimaryDimension for the TIME_AWJ dimension. The example gets the level attribute and the CALENDAR_YEAR hierarchy of the dimension. It then gets Source objects for the attribute and the hierarchy.

Next, the example creates an array of Source objects and gets a List of the MdmHierarchyLevel components of the hierarchy. It gets the Source object for each level and adds it to the array, and then creates a list Source that has the Source objects for the levels as element values.

The example then produces levelMembers, which is a Source that specifies the members of the levels of the hierarchy. Because the comparison parameter of the join operation is the Source produced by levelList.value(), levelMembers has levelList as an input. Therefore, levelMembers is a Source that returns the members of each level, by level, when the input is matched in a join operation.

The range Source specifies a range of elements from the second element to the next to last element of a Source.

The next join operation produces the firstAndLast Source. The base of the operation is levelMembers. The joined parameter is the Source that results from the levelMembers.position() method. The comparison parameter is the range Source and the comparison rule is COMPARISON_RULE_REMOVE. The value of the visible parameter is true. The firstAndLast Source therefore specifies only the first and last members of the levels because it removes all of the other members of the levels from the selection. The firstAndLast Source still has levelList as an input.

The final join operation matches the input of firstAndLast with levelList.

Example 6-4 Selecting the First and Last Time Elements

MdmAttribute mdmTimeLevelAttr = mdmTimeDim.getLevelAttribute();
MdmLevelHierarchy mdmCalHier =
 mdmTimeDim.findOrCreateLevelHierarchy("CALENDAR_YEAR");

Source levelRel = mdmTimeLevelAttr.getSource();
StringSource calHier = (StringSource) mdmCalHier.getSource();

Source[] levelSources = new Source[3];
List levels = mdmCalHier.getHierarchyLevels();
for (int i = 0; i < levelSources.length; i++)
{
 levelSources[i] = ((MdmHierarchyLevel) levels.get(i)).getSource();
}
Source levelList = dp.createListSource(levelSources);
Source levelMembers = calHier.join(levelRel, levelList.value());
Source range = dp.createRangeSource(2, levelMembers.count().minus(1));
Source firstAndLast = levelMembers.join(levelMembers.position(),
 range,
 Source.COMPARISON_RULE_REMOVE,
 true);

Source result = firstAndLast.join(levelList);

A Cursor for the result Source has the following values, displayed as a table with column headings and formatting added. The left column names the level, the middle column is the position of the member in the level, and the right column is the local value of the member. The TOTAL_TIME level has only one member.

Level Member Position in Level Member Value
---------- ------------------------ ------------
TOTAL_TIME 1 TOTAL
YEAR 1 CY1998
YEAR 10 CY2007
QUARTER 1 CY1998.Q1
QUARTER 40 CY2007.Q4
MONTH 1 1998.01
MONTH 120 2007.12

Using the recursiveJoin Method

You use the recursiveJoin method to produce a Source that has elements that are ordered hierarchically. You use the recursiveJoin method only with the Source for an MdmHierarchy or with a subtype of such a Source. The method produces a Source whose elements are ordered hierarchically by the parents and their children in the hierarchy.

Like the join method, you use the recursiveJoin method to produce a Source that has the elements of the base Source that are determined by the joined, comparison, and comparisonRule parameters of the method. The visible parameter determines whether the joined Source is an output of the Source produced by the recursive join operation.

The full recursiveJoin method has other parameters that specify the parent attribute of the hierarchy, whether the result should have the parents before or after their children, and how to order the elements of the result if the result includes children but not the parent. The recursiveJoin method has several signatures that are shortcuts for the full signature.

Example 6-5 uses a recursiveJoin method that lists the parents first, restricts the parents to the base, and does not add the joined Source as an output. The example first sorts the members of the PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ dimension by hierarchical levels and then by the value of the package attribute of each member.

In the first recursiveJoin method, the COMPARISON_RULE_ASCENDING parameter specifies that the members of the prodHier hierarchy be in ascending alphabetical order within each level. The prodParentAttr object is the Source for the parent attribute of the hierarchy.

The prodPkgAttr object in the second recursiveJoin method is the Source for the package attribute of the dimension. Only the members of the ITEM level have a related package attribute value. Because the members in the aggregate levels TOTAL_PRODUCT, CLASS, and FAMILY, do not have a related package, the package attribute value for members in those levels is null, which appears as NA in the results. Some of the ITEM level members do not have a related package value, so their values are NA, also.

The second recursiveJoin method joins the package attribute values to their related hierarchy members and sorts the members hierarchically by level, and then sorts them in ascending alphabetical order in the level by the package attribute value. The COMPARISON_RULE_ASCENDING_NULLS_FIRST parameter specifies that members that have a null value appear before the other members in the same level. The example then joins the result of the method, sortedHierAscending, to the package attribute to produce a Source that has the package attribute values as element values and sortedHierAscending as an output.

The third recursiveJoin method is the same as the second, except that the COMPARISON_RULE_DESCENDING_NULLS_FIRST parameter sorts the hierarchy members in descending alphabetical order in the level by package attribute value.

Example 6-5 Sorting Products Hierarchically by Attribute

Source result1 = prodHier.recursiveJoin(prodDim.value(),
 prodHier.getDataType(),
 prodParentAttr,
 Source.COMPARISON_RULE_ASCENDING);

Source sortedHierAscending =
 prodHier.recursiveJoin(prodPkgAttr,
 prodPkgAttr.getDataType(),
 prodParentAttr,
 Source.COMPARISON_RULE_ASCENDING_NULLS_FIRST);
Source result2 = prodPkgAttr.join(sortedHierAscending);

Source sortedHierDescending =
 prodHier.recursiveJoin(prodPkgAttr,
 prodPkgAttr.getDataType(),
 prodParentAttr,
 Source.COMPARISON_RULE_DESCENDING_NULLS_FIRST);
Source result3 = prodPkgAttr.join(sortedHierDescending);

A Cursor for the result1 Source has the following values, displayed with a heading added. The list contains only the first seventeen values of the Cursor.

Product Primary Hierarchy Value

PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL
PRODUCT_PRIMARY::CLASS::HRD
PRODUCT_PRIMARY::FAMILY::DISK
PRODUCT_PRIMARY::ITEM::EXT CD ROM
PRODUCT_PRIMARY::ITEM::EXT DVD
PRODUCT_PRIMARY::ITEM::INT 8X DVD
PRODUCT_PRIMARY::ITEM::INT CD ROM
PRODUCT_PRIMARY::ITEM::INT CD USB
PRODUCT_PRIMARY::ITEM::INT RW DVD
PRODUCT_PRIMARY::FAMILY::DTPC
PRODUCT_PRIMARY::ITEM::SENT FIN
PRODUCT_PRIMARY::ITEM::SENT MM
PRODUCT_PRIMARY::ITEM::SENT STD
PRODUCT_PRIMARY::FAMILY::LTPC
PRODUCT_PRIMARY::ITEM::ENVY ABM
PRODUCT_PRIMARY::ITEM::ENVY EXE
PRODUCT_PRIMARY::ITEM::ENVY STD
...

A Cursor for the result2 Source has the following values, displayed as a table with headings added. The table contains only the first seventeen values of the Cursor. The left column has the member values of the hierarchy and the right column has the package attribute value for the member.

The ITEM level members that have a null value appear first, and then the other level members appear in ascending order of package value. Since the data type of the package attribute is String, the package values are in ascending alphabetical order.

Product Primary Hierarchy Value Package Attribute Value
------------------------------------- -----------------------
PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL NA
PRODUCT_PRIMARY::CLASS::HRD NA
PRODUCT_PRIMARY::FAMILY::DISK NA
PRODUCT_PRIMARY::ITEM::EXT CD ROM NA
PRODUCT_PRIMARY::ITEM::INT 8X DVD NA
PRODUCT_PRIMARY::ITEM::INT CD USB NA
PRODUCT_PRIMARY::ITEM::EXT DVD Executive
PRODUCT_PRIMARY::ITEM::INT CD ROM Laptop Value Pack
PRODUCT_PRIMARY::ITEM::INT RW DVD Multimedia
PRODUCT_PRIMARY::FAMILY::DTPC NA
PRODUCT_PRIMARY::ITEM::SENT FIN NA
PRODUCT_PRIMARY::ITEM::SENT STD NA
PRODUCT_PRIMARY::ITEM::SENT MM Multimedia
PRODUCT_PRIMARY::FAMILY::LTPC NA
RODUCT_PRIMARY::ITEM::ENVY ABM NA
PRODUCT_PRIMARY::ITEM::ENVY EXE Executive
PRODUCT_PRIMARY::ITEM::ENVY STD Laptop Value Pack
...

A Cursor for the result3 Source has the following values, displayed as a table with headings added. This time the members are in descending order, alphabetically by package attribute value.

Product Primary Hierarchy Value Package Attribute Value
------------------------------------- -----------------------
PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL NA
PRODUCT_PRIMARY::CLASS::HRD NA
PRODUCT_PRIMARY::FAMILY::DISK NA
PRODUCT_PRIMARY::ITEM::EXT CD ROM NA
PRODUCT_PRIMARY::ITEM::INT 8X DVD NA
PRODUCT_PRIMARY::ITEM::INT CD USB NA
PRODUCT_PRIMARY::ITEM::INT RW DVD Multimedia
PRODUCT_PRIMARY::ITEM::INT CD ROM Laptop Value Pack
PRODUCT_PRIMARY::ITEM::EXT DVD Executive
PRODUCT_PRIMARY::FAMILY::DTPC NA
PRODUCT_PRIMARY::ITEM::SENT FIN NA
PRODUCT_PRIMARY::ITEM::SENT STD NA
PRODUCT_PRIMARY::ITEM::SENT MM Multimedia
PRODUCT_PRIMARY::FAMILY::LTPC NA
PRODUCT_PRIMARY::ITEM::ENVY ABM NA
PRODUCT_PRIMARY::ITEM::ENVY STD Laptop Value Pack
PRODUCT_PRIMARY::ITEM::ENVY EXE Executive
...

Using the value Method

As described in "Deriving a Source with an Input", you use the value method to create a Source that has itself as an input. That relationship enables you to select a subset of elements of the Source, as shown in the example in "Selecting Elements of a Source". You can also use the value method to reverse a relation, as shown in the example in "Reversing a Relation".

Selecting Elements of a Source

Example 5-11 and Example 6-6 demonstrate the selection of a subset of the elements of a Source. In Example 6-6, shipHier is a Source for the SHIPMENTS hierarchy of the CUSTOMER_AWJ dimension. The selectValues method of shipHier produces custSel, which is a selection of some of the elements of shipHier. The selectValues method of custSel produces custSel2, which is a subset of that selection.

The first join method has custSel as the base and as the joined Source. It has custSel2 as the comparison Source. The elements of the resulting Source, result1, are the Cartesian product of the base and joined Source objects that are specified by the comparison Source. The result1 Source has one set of the elements of custSel for each element of custSel that is in the comparison Source. The true value of the visible parameter causes the joined Source to be an output of result1.

The second join method also has custSel as the base and custSel2 as the comparison Source, but it has the Source returned by the custSel.value() method as the joined Source. Because custSel is an input of the joined Source, the base Source matches with that input. That input relationship causes the resulting Source, result2, to have only those elements of custSel that are also in the comparison Source.

Example 6-6 Selecting a Subset of the Elements of a Source

StringSource custSel = shipHier.selectValues(new String[]
 {"SHIPMENTS::SHIP_TO::COMP WHSE SIN",
 "SHIPMENTS::SHIP_TO::COMP WHSE LON",
 "SHIPMENTS::SHIP_TO::COMP WHSE SJ",
 "SHIPMENTS::SHIP_TO::COMP WHSE ATL"});

Source custSel2 = custSel.selectValues(new String[]
 {"SHIPMENTS::SHIP_TO::COMP WHSE SIN",
 "SHIPMENTS::SHIP_TO::COMP WHSE SJ"});

Source result1 = custSel.join(custSel, custSel2, true);

Source result2 = custSel.join(custSel.value(), custSel2, true);

A Cursor for result1 has the values shown in the following table. The table has formatting and headings that are not in the Cursor. The left column has the values of the elements of the output of the Cursor. The right column has the base values of the Cursor.

 Output Value result1 Value
--------------------------------- ---------------------------------
SHIPMENTS::SHIP_TO::COMP WHSE SJ SHIPMENTS::SHIP_TO::COMP WHSE ATL
SHIPMENTS::SHIP_TO::COMP WHSE SJ SHIPMENTS::SHIP_TO::COMP WHSE SJ
SHIPMENTS::SHIP_TO::COMP WHSE SJ SHIPMENTS::SHIP_TO::COMP WHSE SIN
SHIPMENTS::SHIP_TO::COMP WHSE SJ SHIPMENTS::SHIP_TO::COMP WHSE LON
SHIPMENTS::SHIP_TO::COMP WHSE SIN SHIPMENTS::SHIP_TO::COMP WHSE ATL
SHIPMENTS::SHIP_TO::COMP WHSE SIN SHIPMENTS::SHIP_TO::COMP WHSE SJ
SHIPMENTS::SHIP_TO::COMP WHSE SIN SHIPMENTS::SHIP_TO::COMP WHSE SIN
SHIPMENTS::SHIP_TO::COMP WHSE SIN SHIPMENTS::SHIP_TO::COMP WHSE LON

A Cursor for result2 has the following values, displayed as a table with headings added. The left column has the values of the elements of the output of the Cursor. The right column has the base values of the Cursor.

 Output Value result2 Value
--------------------------------- ---------------------------------
SHIPMENTS::SHIP_TO::COMP WHSE SJ SHIPMENTS::SHIP_TO::COMP WHSE SJ
SHIPMENTS::SHIP_TO::COMP WHSE SIN SHIPMENTS::SHIP_TO::COMP WHSE SIN

Reversing a Relation

Another use of the value method is to reverse a relation, as shown in Example 6-7. The example reverses the ancestor attribute relation of the CUSTOMER_AWJ dimension to produce a Source, marketsDescendants, that represents a descendants relation. The marketsDescendants Source has as an input the Source for the MARKETS hierarchy of the dimension. When you join marketsDescendants with a Source that matches with that input, you get a Source that specifies the descendants of the participating members of the hierarchy.

Another example of reversing a relation is Example 6-10. It uses the value method in reversing the parent attribute to get the children of a parent.

Example 6-7 first gets the MdmStandardDimension object for the CUSTOMER_AWJ dimension and the MdmLevelHierarchy object for the MARKETS hierarchy of that dimension. It gets the Source for the hierarchy.

The example next gets the ancestors attribute of the dimension and the Source for it. The ancestors attribute relates each dimension member to the ancestors of that member.

To produce a Source that represents the descendants of each member of the dimension, the example reverses the ancestor relation by joining the Source for the hierarchy, mktHier, with the ancestors attribute, ancestorsAttr. The join operation uses mktHier.value() as the comparison Source, so that the Source returned by the join operation, marketsDescendants, has mktHier as an input. The marketsDescendants Source specifies, for each element of ancestorsAttr, the elements of mktHier that have the ancestorsAttr element as their ancestor. Because it has mktHier as an input, the marketsDescendants Source functions in the same way as an attribute that represents the descendants relationship for the hierarchy.

The example demonstrates this when it joins mktHier to marketsDescendants in the following line.

Source selValDescendants = marketsDescendants.join(mktHier, selVal);

In the join operation, the joined Source, mktHier, matches with the input of marketsDescendants. The comparison Source is selVal, which specifies a single member of the hierarchy. The join operation returns selValDescendants, which specifies the elements of marketsDescendants that are the descendants of the selVal member. The result also includes the ancestor member itself. The mktHier Source is not an output of selValDescendants because the signature of the join method used derives a Source that does not have the joined Source as an output.

The example next uses the full signature of the join method to produce selValDescendantsOnly, which contains only the descendants and not the ancestor value. To remove the ancestor value, the example again uses the value method, this time to return a Source that is the joined parameter of the join operation that returns selValDescendantsOnly. The comparison Source is selVal, and the comparison rule is COMPARISON_RULE_REMOVE.

Finally, the example uses the removeValue method to produce selValDescendantsOnly2, which is the same as selValDescendantsOnly. This simply demonstrates that the removeValue method is a shortcut for the join operation that returned selValDescendantsOnly.

Example 6-7 Using the value Method to Reverse a Relation

MdmStandardDimension mdmCustDim =
 mdmDBSchema.findOrCreateStandardDimension("CUSTOMER_AWJ");
MdmLevelHierarchy mdmMktHier =
 mdmCustDim.findOrCreateLevelHierarchy("MARKETS");
StringSource mktHier = (StringSource)mdmMktHier.getSource();
MdmAttribute mdmAncestorsAttr = mdmCustDim.getAncestorsAttribute();
Source ancestorsAttr = mdmAncestorsAttr.getSource();

// Reverse the ancestors relation to get the descendants relation.
Source marketsDescendants = mktHier.join(ancestorsAttr, mktHier.value());

Source selVal = mktHier.selectValue("MARKETS::ACCOUNT::BUSN WRLD");

// Select the descendants of the specified hierarchy member.
StringSource selValDescendants =
 (StringSource)marketsDescendants.join(mktHier, selVal);

// Remove the ancestor value so that only the descendants remain.
Source selValDescendantsOnly =
 selValDescendants.join(selValDescendants.value(),
 selVal,
 Source.COMPARISON_RULE_REMOVE),
 false;

// Produce the same result using the removeValue method.
Source selValDescendantsOnly2 =
 selValDescendants.removeValue("MARKETS::ACCOUNT::BUSN WRLD");

A Cursor for selValDescendants has the following values.

MARKETS::ACCOUNT::BUSN WRLD
MARKETS::SHIP_TO::BUSN WRLD HAM
MARKETS::SHIP_TO::BUSN WRLD NAN
MARKETS::SHIP_TO::BUSN WRLD NY
MARKETS::SHIP_TO::BUSN WRLD SJ

A Cursor for selValDescendantsOnly has the following values.

MARKETS::SHIP_TO::BUSN WRLD HAM
MARKETS::SHIP_TO::BUSN WRLD NAN
MARKETS::SHIP_TO::BUSN WRLD NY
MARKETS::SHIP_TO::BUSN WRLD SJ

A Cursor for selValDescendantsOnly2 has the following values.

MARKETS::SHIP_TO::BUSN WRLD HAM
MARKETS::SHIP_TO::BUSN WRLD NAN
MARKETS::SHIP_TO::BUSN WRLD NY
MARKETS::SHIP_TO::BUSN WRLD SJ

Using Other Source Methods

Along with the methods that are various signatures of the basic methods, the Source class has many other methods that use combinations of the basic methods. Some methods perform selections based on a single position, such as the at and offset methods. Others operate on a range of positions, such as the interval method. Some perform comparisons, such as eq and gt, select one or more elements, such as selectValue or removeValue, or sort elements, such as sortAscending or sortDescendingHierarchically.

The subclasses of Source each have other specialized methods, also. For example, the NumberSource class has many methods that perform mathematical functions such as abs, div, and cos, and methods that perform aggregations, such as average and total.

This topic has examples that demonstrate the use of some of the Source methods. Some of the examples are tasks that an OLAP application typically performs.

Using the extract Method

You use the extract method to extract the values of a Source that is the value of an element of another Source. If the elements of a Source have element values that are not Source objects, then the extract method operates like the value method.

Example 6-8 uses the extract method to get the values of the NumberSource objects that are themselves the values of the elements of the list Source measDim. Each of the NumberSource objects represents a measure.

The example selects elements from StringSource objects for the hierarchies of the dimensions of the UNITS_CUBE_AWJ cube. The cost, units, and sales objects are NumberSource objects for the COST, UNITS, and SALES measures of the cube.

Next, the example creates measDim, which is a list Source that has the three NumberSource objects as element values. It then uses the extract method to get the values of the NumberSource objects. The resulting unnamed Source has measDim as an extraction input. The first join operation has measDim.extract() as the base Source. The input of the base Source matches with measDim, which is the joined parameter. The example then matches the other inputs of the measures by joining the dimension selections to produce the result Source.

Example 6-8 Using the extract Method

Source prodSel = prodHier.selectValues(new String[]
 {"PRODUCT_PRIMARY::ITEM::ENVY STD",
 "PRODUCT_PRIMARY::ITEM::ENVY EXE",
 "PRODUCT_PRIMARY::ITEM::ENVY ABM"});
Source chanSel = chanHier.selectValue("CHANNEL_PRIMARY::CHANNEL::DIR");
Source timeSel = timeHier.selectValue("CALENDAR_YEAR::MONTH::2001.05");
Source custSel = custHier.selectValue("SHIPMENTS::TOTAL_CUSTOMER::TOTAL");

Source measDim = dp.createListSource(new Source[] {cost, units, sales});

Source result = measDim.extract().join(measDim) // column
 .join(prodSel) // row
 .join(timeSel) // page
 .join(chanSel) // page
 .join(custSel); // page

The following crosstab displays the values of a Cursor for the result Source, with headings and formatting added.

SHIPMENTS::TOTAL_CUSTOMER::TOTAL
CHANNEL_PRIMARY::CHANNEL::DIR
CALENDAR_YEAR::MONTH::2001.05

ITEM COST UNITS SOLD SALES AMOUNT
-------- ---------- ---------- -------------
ENVY ABM 73,316.10 26 77,825.54
ENVY EXE 111,588.30 37 116,470.45
ENVY STD 92,692.47 39 93,429.57

Creating a Cube and Pivoting Edges

One typical OLAP operation is the creation of a cube, which is a multi-dimensional array of data. The data of the cube is specified by the elements of the column, row, and page edges of the cube. The data of the cube can be data from a measure that is specified by the members of the dimensions of the measure. The cube data can also be dimension members that are specified by some calculation of the measure data, such as products that have unit sales quantities greater than a specified amount.

Most of the examples in this topic create cubes. Example 6-9 creates a cube that has the quantity of units sold as the data of the cube. The column edge values are initially from a channel dimension hierarchy, the row edge values are from a time dimension hierarchy, and the page edge values are from hierarchies for product and customer dimensions. The product and customer member values on the page edge are represented by parameterized Source objects.

The example joins the selections of the hierarchy members to the short value description attributes for the dimensions so that the results include the attribute values. The example then joins the Source objects derived from the hierarchies to the Source for the measure to produce the cube query. It commits the current Transaction, and then creates a Cursor for the query and displays the values.

After displaying the values of the Cursor, the example changes the value of the Parameter for the parameterized Source for the customer selection, thereby retrieving a different result set using the same Cursor in the same Transaction. The example resets the position of the Cursor, and displays the values of the Cursor again.

The example then pivots the column and row edges so that the column values are time members and the row values are channel members. It commits the Transaction, creates another Cursor for the query, and displays the values. It then changes the value of each Parameter object and displays the values of the Cursor again.

The dp object is the DataProvider. The getContext method gets a Context11g object that has a method that displays the values of the Cursor in a crosstab format.

Example 6-9 Creating a Cube and Pivoting the Edges

// Create Parameter objects with values from the hierarchies
// of the CUSTOMER_AWJ and PRODUCT_AWJ dimensions.
StringParameter custParam =
 new StringParameter(dp, "SHIPMENTS::REGION::EMEA");
StringParameter prodParam =
 new StringParameter(dp, "PRODUCT_PRIMARY::FAMILY::LTPC");

// Create parameterized Source objects using the Parameter objects.
Source custParamSrc = custParam.createSource();
Source prodParamSrc = prodParam.createSource();

// Select single values from the hierarchies, using the Parameter
// objects as the comparisons in the join operations.
Source paramCustSel = custHier.join(custHier.value(), custParamSrc);
Source paramProdSel = prodHier.join(prodHier.value(), prodParamSrc);

// Select members from the other dimensions of the measure.
Source timeSel =
 timeHier.selectValues(new String[] {"CALENDAR_YEAR::YEAR::CY1999"
 "CALENDAR_YEAR::YEAR::CY2000",
 "CALENDAR_YEAR::YEAR::CY2001"});
Source chanSel =
 chanHier.selectValues(new String[] {"CHANNEL_PRIMARY::CHANNEL::DIR",
 "CHANNEL_PRIMARY::CHANNEL::CAT ",
 "CHANNEL_PRIMARY::CHANNEL::INT"});

// Join the hierarchy selections to the short description attributes
// for the dimensions.
Source columnEdge = chanSel.join(chanShortDescr);
Source rowEdge = timeSel.join(timeShortDescr);
Source page1 = paramProdSel.join(prodShortDescr);
Source page2 = paramCustSel.join(custShortDescr);

// Join the dimension selections to the measure.
Source cube = units.join(columnEdge)
 .join(rowEdge)
 .join(page2)
 .join(page1);

// The following method commits the current Transaction.
getContext().commit();

// Create a Cursor for the query.
CursorManager cursorMngr = dp.createCursorManager(cube);
CompoundCursor cubeCursor = (CompoundCursor) cursorMngr.createCursor();

// Display the values of the Cursor as a crosstab.
getContext().displayCursorAsCrosstab(cubeCursor);

// Change the customer parameter value.
custParam.setValue("SHIPMENTS::REGION::AMER");

// Reset the Cursor position to 1 and display the values again.
cubeCursor.setPosition(1);
println();
getContext().displayCursorAsCrosstab(cubeCursor);

// Pivot the column and row edges.
columnEdge = timeSel.join(timeShortDescr);
rowEdge = chanSel.join(chanShortDescr);

// Join the dimension selections to the measure.
cube = units.join(columnEdge)
 .join(rowEdge))
 .join(page2)
 .join(page1);

// Commit the current Transaction.
getContext().commit();

// Create another Cursor.
cursorMngr = dp.createCursorManager(cube);
cubeCursor = (CompoundCursor) cursorMngr.createCursor();
getContext().displayCursorAsCrosstab(cubeCursor);

// Change the product parameter value.
prodParam.setValue("PRODUCT_PRIMARY::FAMILY::DTPC");

// Reset the Cursor position to 1
cubeCursor.setPosition(1);
println();
getContext().displayCursorAsCrosstab(cubeCursor);

The following crosstab has the values of cubeCursor displayed by the first displayCursorAsCrosstab method.

Portable PCs
Europe

 Catalog Direct Sales Internet
1999 1986 86 0
2000 1777 193 10
2001 1449 196 215

The following crosstab has the values of cubeCursor after the example changed the value of the custParam Parameter object.

Portable PCs
North America

 Catalog Direct Sales Internet
1999 6841 385 0
2000 6457 622 35
2001 5472 696 846

The next crosstab has the values of cubeCursor after pivoting the column and row edges.

Portable PCs
North America

 1999 2000 2001
Catalog 6841 6457 5472
Direct Sales 385 622 696
Internet 0 35 846

The last crosstab has the values of cubeCursor after changing the value of the prodParam Parameter object.

Desktop PCs
North America

 1999 2000 2001
Catalog 14057 13210 11337
Direct Sales 793 1224 1319
Internet 0 69 1748

Drilling Up and Down in a Hierarchy

Drilling up or down in a dimension hierarchy is another typical OLAP operation. Example 6-10 demonstrates getting the members of one level of a dimension hierarchy, selecting a member, and then getting the parent, children, and ancestors of the member. The example gets the children of a parent by reversing the parent relation to produce the prodHierChildren Source.

The example uses the following objects.

	
levelSrc, which is the Source for the FAMILY level of the PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ dimension.

	
prodHier, which is the Source for the PRODUCT_PRIMARY hierarchy.

	
prodHierParentAttr, which is the Source for the parent attribute of the hierarchy.

	
prodHierAncsAttr, which is the Source for the ancestors attribute of the hierarchy.

	
prodShortLabel, which is the Source for the short value description attribute of the PRODUCT_AWJ dimension.

Example 6-10 Drilling in a Hierarchy

int pos = 5;
// Get the element at the specified position of the level Source.
Source levelElement = levelSrc.at(pos);

// Get ancestors of the level member.
Source levelElementAncs = prodHierAncsAttr.join(prodHier, levelElement);
// Get the parent of the level member.
Source levelElementParent = prodHierParentAttr.join(prodHier, levelElement);
// Get the children of a parent.
Source prodHierChildren = prodHier.join(prodHierParentAttr, prodHier.value());

// Select the children of the level member.
Source levelElementChildren = prodHierChildren.join(prodHier, levelElement);

// Get the short value descriptions for the members of the level.
Source levelSrcWithShortDescr = prodShortLabel.join(levelSrc);

// Get the short value descriptions for the children.
Source levelElementChildrenWithShortDescr =
 prodShortLabel.join(levelElementChildren);

// Get the short value descriptions for the parents.
Source levelElementParentWithShortDescr =
 prodShortLabel.join(prodHier, levelElementParent, true);

// Get the short value descriptions for the ancestors.
Source levelElementAncsWithShortDescr =
 prodShortLabel.join(prodHier, levelElementAncs, true);

// Commit the current Transaction.
getContext().commit();

// Create Cursor objects and display their values.
println("Level Source element values:");
getContext().displayResult(levelSrcWithShortDescr);
println("\nLevel Source element at position " + pos + ":");
getContext().displayResult(levelElement);
println("\nParent of the level member:");
getContext().displayResult(levelElementParentWithShortDescr);
println("\nChildren of the level member:");
getContext().displayResult(levelElementChildrenWithShortDescr);
println("\nAncestors of the level member:");
getContext().displayResult(levelElementAncsWithShortDescr);

The following list has the values of the Cursor objects created by the displayResults methods.

Level Source element values:
PRODUCT_PRIMARY::FAMILY::ACC,Accessories
PRODUCT_PRIMARY::FAMILY::DISK,CD/DVD
PRODUCT_PRIMARY::FAMILY::DOC,Documentation
PRODUCT_PRIMARY::FAMILY::DTPC,Portable PCs
PRODUCT_PRIMARY::FAMILY::LTPC,Desktop PCs
PRODUCT_PRIMARY::FAMILY::MEM,Memory
PRODUCT_PRIMARY::FAMILY::MOD,Modems/Fax
PRODUCT_PRIMARY::FAMILY::MON,Monitors
PRODUCT_PRIMARY::FAMILY::OS,Operating Systems

Level Source element at position 5:
PRODUCT_PRIMARY::FAMILY:LTPC

Parent of the level member:
PRODUCT_PRIMARY::CLASS::HRD,Hardware

Children of the level member:
PRODUCT_PRIMARY::ITEM::ENVY ABM,Envoy Ambassador
PRODUCT_PRIMARY::ITEM::ENVY EXE,Envoy Executive
PRODUCT_PRIMARY::ITEM::ENVY STD,Envoy Standard

Ancestors of the level member:
PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL,Total Product
PRODUCT_PRIMARY::CLASS::HRD,Hardware
PRODUCT_PRIMARY::FAMILY::LTPC,Portable PCs

Sorting Hierarchically by Measure Values

Example 6-11 uses the recursiveJoin method to sort the members of the PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ dimension hierarchically in ascending order of the values of the UNITS measure. The example joins the sorted products to the short value description attribute of the dimension, and then joins the result of that operation, sortedProductsShortDescr, to units.

The successive joinHidden methods join the selections of the other dimensions of units to produce the result Source, which has the measure data as element values and sortedProductsShortDescr as an output. The example uses the joinHidden methods so that the other dimension selections are not outputs of the result.

The example uses the following objects.

	
prodHier, which is the Source for the PRODUCT_PRIMARY hierarchy.

	
units, which is the Source for the UNITS measure of product units sold.

	
prodParentAttr, which is the Source for the parent attribute of the PRODUCT_PRIMARY hierarchy.

	
prodShortDescr, which is the Source for the short value description attribute of the PRODUCT_AWJ dimension.

	
custSel, which is a Source that specifies a single member of the SHIPMENTS hierarchy of the CUSTOMER_AWJ dimension. The member is SHIPMENTS::TOTAL_CUSTOMER::TOTAL, which is the total for all customers.

	
chanSel, which is a Source that specifies a single member of the CHANNEL_PRIMARY hierarchy of the CHANNEL_AWJ dimension. The member value is CHANNEL_PRIMARY::CHANNEL::DIR, which is the direct sales channel.

	
timeSel, which is a Source that specifies a single member of the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension. The member is CALENDAR_YEAR::YEAR::CY2001, which is the year 2001.

Example 6-11 Hierarchical Sorting by Measure Value

Source sortedProduct =
 prodHier.recursiveJoin(units,
 units.getDataType(),
 prodParentAttr,
 Source.COMPARISON_RULE_ASCENDING,
 true, // Parents first
 true); // Restrict parents to base

Source sortedProductShortDescr = prodShortDescr.join(sortedProduct);
Source result = units.join(sortedProductShortDescr)
 .joinHidden(custSel)
 .joinHidden(chanSel)
 .joinHidden(timeSel);

A Cursor for the result Source has the following values, displayed in a table with column headings and formatting added. The left column has the name of the level in the PRODUCT_PRIMARY hierarchy. The next column to the right has the product identification value, and the next column has the short value description of the product. The rightmost column has the number of units of the product sold to all customers in the year 2001 through the direct sales channel.

The table contains only the first nine and the last eleven values of the Cursor, plus the Software/Other class value. The product values are listed hierarchically and in ascending order by units sold. The Hardware class appears before the Software/Other class because the Software/Other class has a greater number of units sold. In the Hardware class, the Portable PCs family sold the fewest units, so it appears first. In the Software/Other class, the Accessories family has the greatest number of units sold, so it appears last.

Product Level ID Description Units Sold
------------- ------------ ----------------------------- ----------
TOTAL_PRODUCT TOTAL Total Product 43,785
CLASS HRD Hardware 16,543
FAMILY LTPC Portable PCs 1,192
ITEM ENVY ABM Envoy Ambassador 330
ITEM ENVY EXE Envoy Executive 385
ITEM ENVY STD Envoy Standard 477
FAMILY MON Monitors 1,193
ITEM 19 SVGA Monitor- 19" Super VGA 207
ITEM 17 SVGA Monitor- 17"Super VGA 986
...
CLASS SFT Software/Other) 27,242
...
FAMILY ACC Accessories 18,949
ITEM ENVY EXT KBD Envoy External Keyboard 146
ITEM EXT KBD External 101-key keyboard 678
ITEM MM SPKR 5 Multimedia speakers- 5" cones 717
ITEM STD MOUSE Standard Mouse 868
ITEM MM SPKR 3 Multimedia speakers- 3" cones 1,120
ITEM 144MB DISK 1.44MB External 3.5" Diskette 1,145
TEM KBRD REST Keyboard Wrist Rest 2,231
ITEM LT CASE Laptop carrying case 3,704
ITEM DLX MOUSE Deluxe Mouse 3,884
ITEM MOUSE PAD Mouse Pad 4,456

Using NumberSource Methods To Compute the Share of Units Sold

Example 6-12 uses the NumberSource methods div and times to produce a Source that specifies the share that the Desktop PC and Portable PC families have of the total quantity of product units sold for the selected time, customer, and channel values. The example first uses the selectValue method of prodHier, which is the Source for a hierarchy of the PRODUCT_AWJ dimension, to produce totalProds, which specifies a single element with the value PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL, which is the highest aggregate level of the hierarchy.

The joinHidden method of the NumberSource units produces totalUnits, which specifies the UNITS measure values at the total product level, without having totalProds appear as an output of totalUnits. The div method of units then produces a Source that represents each units sold value divided by the total quantity of units sold. The times method then multiplies the result of that div operation by 100 to produce productShare, which represents the percentage, or share, that a product member has of the total quantity of units sold. The productShare Source has the inputs of the units measure as inputs.

The prodFamilies object is the Source for the FAMILY level of the PRODUCT_PRIMARY hierarchy. The join method of productShare, with prodFamilies as the joined Source, produces a Source that specifies the share that each product family has of the total quantity of products sold.

The custSel, chanSel, and timeSel Source objects are selections of single members of hierarchies of the CUSTOMER_AWJ, CHANNEL_AWJ, and TIME_AWJ dimensions. The remaining join methods match those Source objects to the other inputs of productShare, to produce result. The join(Source joined, String comparison) signature of the join method produces a Source that does not have the joined Source as an output.

The result Source specifies the share for each product family of the total quantity of products sold to all customers through the direct sales channel in the year 2001.

Example 6-12 Getting the Share of Units Sold

Source totalProds =
 prodHier.selectValue("PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL");
NumberSource totalUnits = (NumberSource) units.joinHidden(totalProds);
Source productShare = units.div(totalUnits).times(100);
Source result =
 productShare.join(prodFamilies)
 .join(timeHier, "CALENDAR_YEAR::YEAR::CY2001")
 .join(chanHier, "CHANNEL_PRIMARY::CHANNEL::DIR")
 .join(custHier, "SHIPMENTS::TOTAL_CUSTOMER::TOTAL");
Source sortedResult = result.sortAscending();

A Cursor for the sortedResult Source has the following values, displayed in a table with column headings and formatting added. The left column has the product family value and the right column has the share of the total number of units sold for the product family to all customers through the direct sales channel in the year 2001.

Product Family Member Share of Total Units Sold
----------------------------- -------------------------
PRODUCT_PRIMARY::FAMILY::LTPC 2.72%
PRODUCT_PRIMARY::FAMILY::MON 2.73%
PRODUCT_PRIMARY::FAMILY::MEM 3.57%
PRODUCT_PRIMARY::FAMILY::DTPC 5.13%
PRODUCT_PRIMARY::FAMILY::DOC 6.4%
PRODUCT_PRIMARY::FAMILY::DISK 11.71%
PRODUCT_PRIMARY::FAMILY::MOD 11.92%
PRODUCT_PRIMARY::FAMILY::OS 12.54%
PRODUCT_PRIMARY::FAMILY::ACC 43.28%

Selecting Based on Time Series Operations

This topic has two examples of using methods that operate on a series of elements of the MdmLevelHierarchy for the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension. Example 6-13 uses the lag method of unitPrice, which is the Source for the UNIT_PRICE measure, to produce unitPriceLag4, which specifies, for each element of unitPrice that matches with a member of the hierarchy, the element of unitPrice that matches with the hierarchy member that is four time periods earlier at the same level in the hierarchy.

In the example, dp is the DataProvider. The createListSource method creates measuresDim, which has the unitPrice and unitPriceLag4 Source objects as element values. The extract method of measuresDim gets the values of the elements of measuresDim. The Source produced by the extract method has measuresDim as an extraction input. The first join method matches a Source, measuresDim, to the input of the Source returned by the extract method.

The unitPrice and unitPriceLag4 measures both have the Source objects for the PRODUCT_AWJ and TIME_AWJ dimensions as inputs. The second join method matches quarterLevel, which is a Source for the QUARTER level of the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension, with the TIME_AWJ dimension input of the measure, and makes it an output of the resulting Source.

The joinHidden method matches prodSel with the PRODUCT_AWJ dimension input of the measure, and does not make prodSel an output of the resulting Source. The prodSel Source specifies the single hierarchy member PRODUCT_PRIMARY::FAMILY::DTPC, which is Desktop PCs.

The lagResult Source specifies the aggregate unit prices for the Desktop PC product family for each quarter and the quarter that is four quarters earlier.

Example 6-13 Using the Lag Method

NumberSource unitPriceLag4 = unitPrice.lag(mdmCalHier, 4);
Source measuresDim = dp.createListSource(new Source[] {unitPrice,
 unitPriceLag4});

Source lagResult = measuresDim.extract()
 .join(measuresDim)
 .join(quarterLevel)
 .joinHidden(prodSel);

A Cursor for the lagResult Source has the following values, displayed in a table with column headings and formatting added. The left column has the quarter, the middle column has the total of the unit prices for the members of the Desktop PC family for that quarter, and the right column has the total of the unit prices for the quarter that is four quarters earlier. The first four values in the right column are NA because quarter 5, Q1-98, is the first quarter in the CALENDAR_YEAR hierarchy. The table includes only the first eight quarters.

 Unit Price
Quarter Unit Price Four Quarters Before
--------------------------------- ---------- --------------------
CALENDAR_YEAR::QUARTER::CY1998.Q1 2687.54 NA
CALENDAR_YEAR::QUARTER::CY1998.Q2 2704.48 NA
CALENDAR_YEAR::QUARTER::CY1998.Q3 2673.27 NA
CALENDAR_YEAR::QUARTER::CY1998.Q4 2587.76 NA
CALENDAR_YEAR::QUARTER::CY1999.Q1 2394.79 2687.54
CALENDAR_YEAR::QUARTER::CY1999.Q2 2337.18 2704.48
CALENDAR_YEAR::QUARTER::CY1999.Q3 2348.39 2673.27
CALENDAR_YEAR::QUARTER::CY1999.Q4 2177.89 2587.76
...

Example 6-14 uses the same unitPrice, mdmCalHier, quarterLevel, and prodSel objects as Example 6-13, but it uses the unitPriceMovingTotal measure as the second element of measuresDim. The unitPriceMovingTotal Source is produced by the movingTotal method of unitPrice. That method provides mdmCalHier, which is the MdmLevelHierarchy for the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension, as the dimension parameter and the integers 0 and 3 as the starting and ending offset values.

The movingTotalResult Source specifies, for each quarter, the aggregate of the unit prices for the members of the Desktop PC family for that quarter and the total of that unit price plus the unit prices for the next three quarters.

Example 6-14 Using the movingTotal Method

NumberSource unitPriceMovingTotal =
 unitPrice.movingTotal(mdmCalHier, 0, 3);

Source measuresDim =
 dp.createListSource(new Source[]{unitPrice, unitPriceMovingTotal});

Source movingTotalResult = measuresDim.extract()
 .join(measuresDim)
 .join(quarterLevel)
 .joinHidden(prodSel);

A Cursor for the movingTotalResult Source has the following values, displayed in a table with column headings and formatting added. The left column has the quarter, the middle column has the total of the unit prices for the members of the Desktop PC family for that quarter, and the left column has the total of the unit prices for that quarter and the next three quarters. The table includes only the first eight quarters.

 Unit Price Moving Total
Quarter Unit Price Current Plus Next Three Periods
--------------------------------- ---------- -------------------------------
CALENDAR_YEAR::QUARTER::CY1998.Q1 2687.54 10653.05
CALENDAR_YEAR::QUARTER::CY1998.Q2 2704.48 10360.30
CALENDAR_YEAR::QUARTER::CY1998.Q3 2673.27 9993.00
CALENDAR_YEAR::QUARTER::CY1998.Q4 2587.76 9668.12
CALENDAR_YEAR::QUARTER::CY1999.Q1 2394.79 9258.25
CALENDAR_YEAR::QUARTER::CY1999.Q2 2337.18 8911.87
CALENDAR_YEAR::QUARTER::CY1999.Q3 2348.39 8626.48
CALENDAR_YEAR::QUARTER::CY1999.Q4 2177.89 8291.37
...

Selecting a Set of Elements Using Parameterized Source Objects

Example 6-15 uses NumberParameter objects to create parameterized Source objects. Those objects are the bottom and top parameters for the interval method of prodHier. That method returns paramProdSelInterval, which is a Source that specifies the set of elements of prodHier from the bottom to the top positions of the hierarchy.

The elements of the product Source specify the elements of the units measure that appear in the result Source. By changing the values of the Parameter objects, you can select a different set of units sold values using the same Cursor and without having to produce new Source and Cursor objects.

The example uses the following objects.

	
dp, which is the DataProvider for the session.

	
prodHier, which is the Source for the PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ dimension.

	
prodShortDescr, which is the Source for the short value description attribute of the PRODUCT_AWJ dimension.

	
units, which is the Source for the UNITS measure of product units sold.

	
chanHier, which is the Source for the CHANNEL_PRIMARY hierarchy of the CHANNEL_AWJ dimension.

	
calHier, which is the Source for the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension.

	
shipHier, which is the Source for the SHIPMENTS hierarchy of the CUSTOMER_AWJ dimension.

	
The Context11g object that is returned by the getContext method. The Context11g has methods that commit the current Transaction, that create a Cursor for a Source, that display text, and that display the values of the Cursor.

The join method of prodShortDescr gets the short value descriptions for the elements of paramProdSelInterval. The next four join methods match Source objects with the inputs of the units measure. The example creates a Cursor and displays the result set of the query. Next, the setPosition method of resultCursor sets the position of the Cursor back to the first element.

The setValue methods of the NumberParameter objects change the values of those objects, which changes the selection of elements of the product Source that are specified by the query. The example then displays the values of the Cursor again.

Example 6-15 Selecting a Range With NumberParameter Objects

NumberParameter startParam = new NumberParameter(dp, 1);
NumberParameter endParam = new NumberParameter(dp, 6);

NumberSource startParamSrc = (NumberSource)startParam.createSource();
NumberSource endParamSrc = (NumberSource)endParam.createSource();

Source paramProdSelInterval =
 prodHier.interval(startParamSrc, endParamSrc);
Source paramProdSelIntervalShortDescr =
 prodShortDescr.join(paramProdSelInterval);

NumberSource result =
 (NumberSource)units.join(chanHier, "CHANNEL_PRIMARY::CHANNEL::INT")
 .join(calHier, "CALENDAR_YEAR::YEAR::CY2001")
 .join(shipHier, "SHIPMENTS::TOTAL_CUSTOMER::TOTAL")
 .join(paramProdSelIntervalShortDescr);

// Commit the current transaction.
getContext().commit();

CursorManager cursorMngr = dp.createCursorManager(result);
Cursor resultCursor = cursorMngr.createCursor();

getContext().displayCursor(resultCursor);

//Reset the Cursor position to 1.
resultCursor.setPosition(1);

// Change the value of the parameterized Source.
startParam.setValue(7);
endParam.setValue(12);

// Display the results again.
getContext().displayCursor(resultsCursor);

The following table displays the values of resultCursor, with column headings and formatting added. The left column has the product hierarchy members, the middle column has the short value description, and the right column has the quantity of units sold.

 Product Description Units Sold
------------------------------------- ---------------------- ----------
PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL Total Product 55,872
PRODUCT_PRIMARY::CLASS::HRD Hardware 21,301
PRODUCT_PRIMARY::FAMILY::DISK Memory 6,634
PRODUCT_PRIMARY::ITEM::EXT CD ROM External 48X CD-ROM 136
PRODUCT_PRIMARY::ITEM::EXT DVD External - DVD-RW - 8X 1,526
PRODUCT_PRIMARY::ITEM::INT 8X DVD Internal - DVD-RW - 8X 1,543

 Product Description Units Sold
------------------------------------- ---------------------- ----------
PRODUCT_PRIMARY::ITEM::INT CD ROM Internal 48X CD-ROM 380
PRODUCT_PRIMARY::ITEM::INT CD USB Internal 48X CD-ROM USB 162
PRODUCT_PRIMARY::ITEM::INT RW DVD Internal - DVD-RW - 6X 2,887
PRODUCT_PRIMARY::FAMILY::DTPC Desktop PCs 2,982
PRODUCT_PRIMARY::ITEM::SENT FIN Sentinel Financial 1,015
PRODUCT_PRIMARY::ITEM::SENT MM Sentinel Multimedia 875

7 Using a TransactionProvider

This chapter describes the Oracle OLAP Java API Transaction and TransactionProvider interfaces and describes how you use implementations of those interfaces in an application. You get a TransactionProvider from a DataProvider. You use the commitCurrentTransaction method of the TransactionProvider to save a metadata object in persistent storage in the database. You also use that method after creating a derived Source and before creating a Cursor for the Source. For examples of committing a Transaction after creating a metadata object, see Chapter 4.

This chapter includes the following topics:

	
About Creating a Metadata Object or a Query in a Transaction

	
Using TransactionProvider Objects

About Creating a Metadata Object or a Query in a Transaction

The Oracle OLAP Java API is transactional. Creating metadata objects or Source objects for a query occurs in the context of a Transaction. A TransactionProvider provides Transaction objects to the application and commits or discards those Transaction objects.

The TransactionProvider ensures the following:

	
A Transaction is isolated from other Transaction objects. Operations performed in a Transaction are not visible in, and do not affect, other Transaction objects.

	
If an operation in a Transaction fails, then the effects of the operation are undone (the Transaction is rolled back).

	
The effects of a completed Transaction persist.

When you create a DataProvider and UserSession, the session does not at first have a Transaction. The first Transaction in a session is a root Transaction. You can explicitly create a root Transaction by calling the createRootTransaction method of the TransactionProvider. If you do not explicitly created one, then Oracle OLAP automatically creates a root Transaction the first time that you create or modify an MdmObject or a derived Source. To make permanent the changes to an MdmObject, you must commit the root Transaction in which you made the changes.

A single-user application does not need to explicitly create a root Transaction. The ability to create multiple root Transaction objects is provided for use by multithreaded, middle-tier applications. If your application uses multiple root Transaction objects, the changes that the application makes in one root Transaction can be overwritten by changes the application makes in another root Transaction. The changes that occur in the last root Transaction that the application commits are the changes that persist.

When you or Oracle OLAP creates the initial root Transaction, it is the current Transaction. If you create another root Transaction, it becomes the current Transaction.

Oracle OLAP creates other Transaction objects as you create Source objects or child Transaction objects under a root Transaction. You must commit the root Transaction for the Oracle Database to add to persistent storage any metadata objects that you have created in any Transaction in the session.

When you create a derived Source by calling a method of another Source, the derived Source is created in the context of the current Transaction. The Source is active in the Transaction in which you create it or in a child Transaction of that Transaction.

You get or set the current Transaction, or begin a child Transaction, by calling methods of a TransactionProvider. In a child Transaction you can alter a query, for example by changing the selection of dimension elements or by performing a different mathematical or analytical operation on the data, which changes the state of a Template that you created in the parent Transaction. By displaying the data specified by the Source produced by the Template in the parent Transaction and also displaying the data specified by the Source produced by the Template in the child Transaction, you can provide the end user of your application with the means of easily altering a query and viewing the results of different operations on the same set of data, or the same operations on different sets of data.

Types of Transaction Objects

The OLAP Java API has the following two types of Transaction objects:

	
A read Transaction. Initially, the current Transaction is a read Transaction. A read Transaction is required for creating a Cursor to fetch data from Oracle OLAP. For more information on Cursor objects, see Chapter 9.

	
A write Transaction. A write Transaction is required for creating a derived Source or for changing the state of a Template. For more information on creating a derived Source, see Chapter 5. For information on Template objects, see Chapter 10.

In the initial read Transaction, if you create a derived Source or if you change the state of a Template object, then a child write Transaction is automatically generated. That child Transaction becomes the current Transaction.

If you then create another derived Source or change the Template state again, then that operation occurs in the same write Transaction. You can create any number of derived Source objects, or make any number of Template state changes, in that same write Transaction. You can use those Source objects, or the Source produced by the Template, to define a complex query.

Before you can create a Cursor to fetch the result set specified by a derived Source, you must move the Source from the child write Transaction into the parent read Transaction. To do so, you commit the Transaction.

Committing a Transaction

To move a Source that you created in a child Transaction into the parent read Transaction, call the commitCurrentTransaction method of the TransactionProvider. When you commit a child write Transaction, a Source you created in the child Transaction moves into the parent read Transaction. The child Transaction disappears and the parent Transaction becomes the current Transaction. The Source is active in the current read Transaction and you can therefore create a Cursor for it.

In Example 7-1, commit() is a method that commits the current Transaction. In the example, dp is the DataProvider.

Example 7-1 Committing the Current Transaction

private void commit()
{
 try
 {
 (dp.getTransactionProvider()).commitCurrentTransaction();
 }
 catch (Exception ex)
 {
 System.out.println("Could not commit the Transaction. " + ex);
 }
}

About Transaction and Template Objects

Getting and setting the current Transaction, beginning a child Transaction, and rolling back a Transaction are operations that you use to allow an end user to make different selections starting from a given state of a dynamic query.

To present the end user with alternatives based on the same initial query, you do the following:

	
Create a Template in a parent Transaction and set the initial state for the Template.

	
Get the Source produced by the Template, create a Cursor to retrieve the result set, get the values from the Cursor, and then display the results to the end user.

	
Begin a child Transaction and modify the state of the Template.

	
Get the Source produced by the Template in the child Transaction, create a Cursor, get the values, and display them.

You can then replace the first Template state with the second one or discard the second one and retain the first.

Beginning a Child Transaction

To begin a child read Transaction, call the beginSubtransaction method of the TransactionProvider you are using. In the child read Transaction, if you change the state of a Template, then a child write Transaction begins automatically. The write Transaction is a child of the child read Transaction.

To get the data specified by the Source produced by the Template, you commit the write Transaction into the parent read Transaction. You can then create a Cursor to fetch the data. The changed state of the Template is not visible in the original parent. The changed state does not become visible in the parent until you commit the child read Transaction into the parent read Transaction.

After beginning a child read Transaction, you can begin a child read Transaction of that child, or a grandchild of the initial parent Transaction. For an example of creating child and grandchild Transaction objects, see Example 7-3.

About Rolling Back a Transaction

You roll back, or undo, a Transaction by calling the rollbackCurrentTransaction method of the TransactionProvider you are using. Rolling back a Transaction discards any changes that you made during that Transaction and makes the Transaction disappear.

Before rolling back a Transaction, you must close any CursorManager objects you created in that Transaction. After rolling back a Transaction, any Source objects that you created or Template state changes that you made in the Transaction are no longer valid. Any Cursor objects you created for those Source objects are also invalid.

Once you roll back a Transaction, you cannot commit that Transaction. Likewise, once you commit a Transaction, you cannot roll it back.

Example 7-2 Rolling Back a Transaction

The following example uses the TopBottomTemplate and SingleSelectionTemplate classes that are described in Chapter 10, "Creating Dynamic Queries". In creating the TopBottomTemplate and SingleSelectionTemplate objects, the example uses the same code that appears in Example 10-4, "Getting the Source Produced by the Template". Example 7-2 does not show that code. This example sets the state of the TopBottomTemplate. It begins a child Transaction that sets a different state for the TopBottomTemplate and then rolls back the child Transaction. The println method displays text through a CursorPrintWriter object and the getContext method gets a Context11g object that has methods that create Cursor objects and display their values through the CursorPrintWriter. The CursorPrintWriter and Context11g classes are used by the example programs in this documentation.

// The current Transaction is a read Transaction, t1.
// Create a TopBottomTemplate using a hierarchy of the PRODUCT_AWJ dimension
// as the base and dp as the DataProvider.
TopBottomTemplate topNBottom = new TopBottomTemplate(prodHier, dp);

// Changing the state of a Template requires a write Transaction, so a
// write child Transaction, t2, is automatically started.
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);
topNBottom.setN(10);
topNBottom.setCriterion(singleSelections.getSource());

// Get the TransactionProvider and commit the Transaction t2.
TransactionProvider tp = dp.getTransactionProvider();
try
{
 tp.commitCurrentTransaction(); // t2 disappears
}
catch(Exception e)
{
 println("Cannot commit the Transaction. " + e);
}

// The current Transaction is now t1.
// Get the dynamic Source produced by the TopBottomTemplate.
Source result = topNBottom.getSource();

// Create a Cursor and display the results
println("\nThe current state of the TopBottomTemplate" +
 "\nproduces the following values:\n");
getContext().displayTopBottomResult(result);

// Start a child Transaction, t3. It is a read Transaction.
tp.beginSubtransaction(); // t3 is the current Transaction

// Change the state of topNBottom. Changing the state requires a
// write Transaction so Transaction t4 starts automatically.
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);
topNBottom.setN(15);

// Commit the Transaction.
try
{
 tp.commitCurrentTransaction(); // t4 disappears
}
catch(Exception e)
{
 println("Cannot commit the Transaction. " + e);
}

// Create a Cursor and display the results. // t3 is the current Transaction
println("\nIn the child Transaction, the state of the" +
 "\nTopBottomTemplate produces the following values:\n");
getContext().displayTopBottomResult(result);
// The displayTopBottomResult method closes the CursorManager for the
// Cursor created in t3.

// Undo t3, which discards the state of topNBottom that was set in t4.
tp.rollbackCurrentTransaction(); // t3 disappears

// Transaction t1 is now the current Transaction and the state of
// topNBottom is the one defined in t2.

// To show the current state of the TopNBottom template Source, commit
// the Transaction, create a Cursor, and display the Cursor values.
try
{
 tp.commitCurrentTransaction();
}
catch(Exception e)
{
 println("Cannot commit the Transaction. " + e);
}

println("\nAfter rolling back the child Transaction, the state of"
 + "\nthe TopBottomTemplate produces the following values:\n");
getContext().displayTopBottomResult(result);

Example 7-2 produces the following output.

The current state of the TopBottomTemplate
produces the following values:

 1. PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL
 2. PRODUCT_PRIMARY::CLASS::SFT
 3. PRODUCT_PRIMARY::FAMILY::ACC
 4. PRODUCT_PRIMARY::CLASS::HRD
 5. PRODUCT_PRIMARY::FAMILY::MOD
 6. PRODUCT_PRIMARY::FAMILY::OS
 7. PRODUCT_PRIMARY::FAMILY::DISK
 8. PRODUCT_PRIMARY::ITEM::MOUSE PAD
 9. PRODUCT_PRIMARY::ITEM::OS 1 USER
10. PRODUCT_PRIMARY::ITEM::DLX MOUSE

In the child Transaction, the state of the
TopBottomTemplate produces the following values:

 1. PRODUCT_PRIMARY::ITEM::EXT CD ROM
 2. PRODUCT_PRIMARY::ITEM::OS DOC ITA
 3. PRODUCT_PRIMARY::ITEM::OS DOC SPA
 4. PRODUCT_PRIMARY::ITEM::INT CD USB
 5. PRODUCT_PRIMARY::ITEM::ENVY EXT KBD
 6. PRODUCT_PRIMARY::ITEM::19 SVGA
 7. PRODUCT_PRIMARY::ITEM::OS DOC FRE
 8. PRODUCT_PRIMARY::ITEM::OS DOC GER
 9. PRODUCT_PRIMARY::ITEM::ENVY ABM
10. PRODUCT_PRIMARY::ITEM::INT CD ROM
11. PRODUCT_PRIMARY::ITEM::ENVY EXE
12. PRODUCT_PRIMARY::ITEM::OS DOC KAN
13. PRODUCT_PRIMARY::ITEM::ENVY STD
14. PRODUCT_PRIMARY::ITEM::1GB USB DRV
15. PRODUCT_PRIMARY::ITEM::SENT MM

After rolling back the child Transaction, the state of
the TopBottomTemplate produces the following values:

 1. PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL
 2. PRODUCT_PRIMARY::CLASS::SFT
 3. PRODUCT_PRIMARY::FAMILY::ACC
 4. PRODUCT_PRIMARY::CLASS::HRD
 5. PRODUCT_PRIMARY::FAMILY::MOD
 6. PRODUCT_PRIMARY::FAMILY::OS
 7. PRODUCT_PRIMARY::FAMILY::DISK
 8. PRODUCT_PRIMARY::ITEM::MOUSE PAD
 9. PRODUCT_PRIMARY::ITEM::OS 1 USER
10. PRODUCT_PRIMARY::ITEM::DLX MOUSE

Getting and Setting the Current Transaction

You get the current Transaction by calling the getCurrentTransaction method of the TransactionProvider you are using, as in the following example.

Transaction t1 = tp.getCurrentTransaction();

To make a previously saved Transaction the current Transaction, you call the setCurrentTransaction method of the TransactionProvider, as in the following example.

tp.setCurrentTransaction(t1);

Using TransactionProvider Objects

In the Oracle OLAP Java API, a DataProvider provides an implementation of the TransactionProvider interface. The TransactionProvider provides Transaction objects to your application.

As described in "Committing a Transaction", you use the commitCurrentTransaction method to make a derived Source that you created in a child write Transaction visible in the parent read Transaction. You can then create a Cursor for that Source.

If you are using Template objects in your application, then you might also use the other methods of TransactionProvider to do the following:

	
Begin a child Transaction.

	
Get the current Transaction so you can save it.

	
Set the current Transaction to a previously saved one.

	
Rollback, or undo, the current Transaction, which discards any changes made in the Transaction. Once a Transaction has been rolled back, it is invalid and cannot be committed. Once a Transaction has been committed, it cannot be rolled back. If you created a Cursor for a Source in a Transaction, then you must close the CursorManager before rolling back the Transaction.

Example 7-3 demonstrates the use of Transaction objects to modify dynamic queries. Like Example 7-2, this example uses the same code to create TopBottomTemplate and SingleSelectionTemplate objects as does Example 10-4, "Getting the Source Produced by the Template". This example does not show that code.

To help track the Transaction objects, this example saves the different Transaction objects with calls to the getCurrentTransaction method. In the example, the tp object is the TransactionProvider. The println method displays text through a CursorPrintWriter and the getContext method gets a Context11g object that has methods that create Cursor objects and display their values through the CursorPrintWriter. The commit method is the method from Example 7-1.

Example 7-3 Using Child Transaction Objects

// The parent Transaction is the current Transaction at this point.
// Save the parent read Transaction as parentT1.
Transaction parentT1 = tp.getCurrentTransaction();

// Get the dynamic Source produced by the TopBottomTemplate.
Source result = topNBottom.getSource();

// Create a Cursor and display the results.
println("\nThe current state of the TopBottomTemplate" +
 "\nproduces the following values:\n");
getContext().displayTopBottomResult(result);

// Begin a child Transaction of parentT1.
tp.beginSubtransaction(); // This is a read Transaction.

// Save the child read Transaction as childT2.
Transaction childT2 = tp.getCurrentTransaction();

// Change the state of the TopBottomTemplate. This starts a
// write Transaction, a child of the read Transaction childT2.
topNBottom.setN(12);
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);

// Save the child write Transaction as writeT3.
Transaction writeT3 = tp.getCurrentTransaction();

// Commit the write Transaction writeT3.
commit();

// The commit moves the changes made in writeT3 into its parent,
// the read Transaction childT2. The writeT3 Transaction
// disappears. The current Transaction is now childT2
// again but the state of the TopBottomTemplate has changed.

// Create a Cursor and display the results of the changes to the
// TopBottomTemplate that are visible in childT2.
try
{
 println("\nIn the child Transaction, the state of the" +
 "\nTopBottomTemplate produces the following values:\n");

 getContext().displayTopBottomResult(result);
}
catch(Exception e)
{
 println("Cannot display the results of the query. " + e);
}

// Begin a grandchild Transaction of the initial parent.
tp.beginSubtransaction(); // This is a read Transaction.

// Save the grandchild read Transaction as grandchildT4.
Transaction grandchildT4 = tp.getCurrentTransaction();

// Change the state of the TopBottomTemplate. This starts another
// write Transaction, a child of grandchildT4.
topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);

// Save the write Transaction as writeT5.
Transaction writeT5 = tp.getCurrentTransaction();

// Commit writeT5.
commit();

// Transaction grandchildT4 is now the current Transaction and the
// changes made to the TopBottomTemplate state are visible.

// Create a Cursor and display the results visible in grandchildT4.
try
{
 println("\nIn the grandchild Transaction, the state of the" +
 "\nTopBottomTemplate produces the following values:\n");
 getContext().displayTopBottomResult(result);
}
catch(Exception e)
{
 println(""Cannot display the results of the query. " + e);
}

// Commit the grandchild into the child.
commit();

// Transaction childT2 is now the current Transaction.
// Instead of preparing and committing the grandchild Transaction,
// you could rollback the Transaction, as in the following
// method call:
// rollbackCurrentTransaction();
// If you roll back the grandchild Transaction, then the changes
// you made to the TopBottomTemplate state in the grandchild
// are discarded and childT2 is the current Transaction.

// Commit the child into the parent.
commit();

// Transaction parentT1 is now the current Transaction. Again,
// you can roll back the childT2 Transaction instead of committing it.
// If you do so, then the changes that you made in childT2 are discarded.
// The current Transaction is be parentT1, which has the original state
// of the TopBottomTemplate, without any of the changes made in the
// grandchild or the child transactions.

Example 7-3 produces the following output.

The current state of the TopBottomTemplate
produces the following values:

 1. PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL
 2. PRODUCT_PRIMARY::CLASS::SFT
 3. PRODUCT_PRIMARY::FAMILY::ACC
 4. PRODUCT_PRIMARY::CLASS::HRD
 5. PRODUCT_PRIMARY::FAMILY::MOD
 6. PRODUCT_PRIMARY::FAMILY::OS
 7. PRODUCT_PRIMARY::FAMILY::DISK
 8. PRODUCT_PRIMARY::ITEM::MOUSE PAD
 9. PRODUCT_PRIMARY::ITEM::OS 1 USER
10. PRODUCT_PRIMARY::ITEM::DLX MOUSE

In the child Transaction, the state of the
TopBottomTemplate produces the following values:

 1. PRODUCT_PRIMARY::ITEM::EXT CD ROM
 2. PRODUCT_PRIMARY::ITEM::OS DOC ITA
 3. PRODUCT_PRIMARY::ITEM::OS DOC SPA
 4. PRODUCT_PRIMARY::ITEM::INT CD USB
 5. PRODUCT_PRIMARY::ITEM::ENVY EXT KBD
 6. PRODUCT_PRIMARY::ITEM::19 SVGA
 7. PRODUCT_PRIMARY::ITEM::OS DOC FRE
 8. PRODUCT_PRIMARY::ITEM::OS DOC GER
 9. PRODUCT_PRIMARY::ITEM::ENVY ABM
10. PRODUCT_PRIMARY::ITEM::INT CD ROM
11. PRODUCT_PRIMARY::ITEM::ENVY EXE
12. PRODUCT_PRIMARY::ITEM::OS DOC KAN

In the grandchild Transaction, the state of the
TopBottomTemplate produces the following values:

 1. PRODUCT_PRIMARY::TOTAL_PRODUCT::TOTAL
 2. PRODUCT_PRIMARY::CLASS::SFT
 3. PRODUCT_PRIMARY::FAMILY::ACC
 4. PRODUCT_PRIMARY::CLASS::HRD
 5. PRODUCT_PRIMARY::FAMILY::MOD
 6. PRODUCT_PRIMARY::FAMILY::OS
 7. PRODUCT_PRIMARY::FAMILY::DISK
 8. PRODUCT_PRIMARY::ITEM::MOUSE PAD
 9. PRODUCT_PRIMARY::ITEM::OS 1 USER
10. PRODUCT_PRIMARY::ITEM::DLX MOUSE
11. PRODUCT_PRIMARY::ITEM::LT CASE
12. PRODUCT_PRIMARY::ITEM::56KPS MODEM

8 Understanding Cursor Classes and Concepts

This chapter describes the Oracle OLAP Java API Cursor class and the related classes that you use to retrieve the results of a query. This chapter also describes the Cursor concepts of position, fetch size, and extent. For examples of creating and using a Cursor and its related objects, see Chapter 9, "Retrieving Query Results".

This chapter includes the following topics:

	
Overview of the OLAP Java API Cursor Objects

	
Cursor Classes

	
CursorInfoSpecification Classes

	
CursorManager Class

	
About Cursor Positions and Extent

	
About Fetch Sizes

Overview of the OLAP Java API Cursor Objects

A Cursor retrieves the result set specified by a Source. You create a Cursor by calling the createCursor method of a CursorManager. You create a CursorManager by calling the createCursorManager method of a DataProvider.

You can get the SQL generated for a Source by the Oracle OLAP SQL generator without having to create a Cursor. To get the SQL for the Source, you create an SQLCursorManager by using a createSQLCursorManager method of a DataProvider. You can then use classes outside of the OLAP Java API, or other methods, to retrieve data using the generated SQL.

Creating a Cursor

You create a Cursor for a Source by doing the following:

	
Creating a CursorManager by calling one of the createCursorManager methods of the DataProvider and passing it the Source. If you want to alter the behavior of the Cursor, then you can create a CursorInfoSpecification and use the methods of it to specify the behavior. You then create a CursorManager with a method that takes the Source and the CursorInfoSpecification.

	
Creating a Cursor by calling the createCursor method of the CursorManager.

Sources For Which You Cannot Create a Cursor

Some Source objects do not specify data that a Cursor can retrieve from the data store. The following are Source objects for which you cannot create a Cursor that contains values.

	
A Source that specifies an operation that is not computationally possible. An example is a Source that specifies an infinite recursion.

	
A Source that defines an infinite result set. An example is the fundamental Source that represents the set of all String objects.

	
A Source that has no elements or includes another Source that has no elements. Examples are a Source returned by the getEmptySource method of DataProvider and another Source derived from the empty Source. Another example is a derived Source that results from selecting a value from a primary Source that you got from an MdmDimension and the selected value does not exist in the dimension.

If you create a Cursor for such a Source and try to get the values of the Cursor, then an Exception occurs.

Cursor Objects and Transaction Objects

When you create a derived Source or change the state of a Template, you create the Source in the context of the current Transaction. The Source is active in the Transaction in which you create it or in a child Transaction of that Transaction. A Source must be active in the current Transaction for you to be able to create a Cursor for it.

Creating a derived Source occurs in a write Transaction. Creating a Cursor occurs in a read Transaction. After creating a derived Source, and before you can create a Cursor for that Source, you must change the write Transaction into a read Transaction by calling the commitCurrentTransaction methods of the TransactionProvider your application is using. For information on Transaction and TransactionProvider objects, see Chapter 7, "Using a TransactionProvider".

For a Cursor that you create for a query that includes a parameterized Source, you can change the value of the Parameter object and then get the new values of the Cursor without having to commit the Transaction again. For information on parameterized Source objects, see Chapter 5, "Understanding Source Objects".

Cursor Classes

In the oracle.olapi.data.cursor package, the Oracle OLAP Java API defines the interfaces described in the following table.

	Interface	Description
	Cursor	An abstract superclass that encapsulates the notion of a current position.
	ValueCursor	A Cursor that has a value at the current position. A ValueCursor has no child Cursor objects.
	CompoundCursor	A Cursor that has child Cursor objects, which are a child ValueCursor for the values of the Source associated with it and an output child Cursor for each output of the Source.

Structure of a Cursor

The structure of a Cursor mirrors the structure of the Source associated with it. If the Source does not have any outputs, then the Cursor for that Source is a ValueCursor. If the Source has one or more outputs, then the Cursor for that Source is a CompoundCursor. A CompoundCursor has as children a base ValueCursor, which has the values of the base of the Source of the CompoundCursor, and one or more output Cursor objects.

The output of a Source is another Source. An output Source can itself have outputs. The child Cursor for an output of a Source is a ValueCursor if the output Source does not have any outputs and a CompoundCursor if it does.

Example 8-1 creates a query that specifies the prices of selected product items for selected months. In the example, timeHier is a Source for a hierarchy of a dimension of time values, and prodHier is a Source for a hierarchy of a dimension of product values.

If you create a Cursor for prodSel or for timeSel, then either Cursor is a ValueCursor because both prodSel and timeSel have no outputs.

The unitPrice object is a Source for an MdmBaseMeasure that represents values for the price of product units. The MdmBaseMeasure has as inputs the MdmPrimaryDimension objects representing products and times, and the unitPrice Source has as inputs the Source objects for those dimensions.

The example selects elements of the dimension hierarchies and then joins the Source objects for the selections to that of the measure to produce querySource, which has prodSel and timeSel as outputs.

Example 8-1 Creating the querySource Query

Source timeSel = timeHier.selectValues(new String[]
 {"CALENDAR_YEAR::MONTH::2001.01",
 "CALENDAR_YEAR::MONTH::2001.04",
 "CALENDAR_YEAR::MONTH::2001.07",
 "CALENDAR_YEAR::MONTH::2001.10"});

Source prodSel = prodHier.selectValues(new String[]
 {"PRODUCT_PRIMARY::ITEM::ENVY ABM",
 "PRODUCT_PRIMARY::ITEM::ENVY EXE",
 "PRODUCT_PRIMARY::ITEM::ENVY STD"});

Source querySource = unitPrice.join(timeSel).join(prodSel);

The result set defined by querySource is the unit price values for the selected products for the selected months. The results are organized by the outputs. Since timeSel is joined to the Source produced by the unitPrice.join(prodSel) operation, timeSel is the slower varying output, which means that the result set specifies the set of selected products for each selected time value. For each time value the result set has three product values so the product values vary faster than the time values. The values of the base ValueCursor of querySource are the fastest varying of all, because there is one price value for each product for each day.

Example 9-1 in Chapter 9, creates a Cursor, queryCursor, for querySource. Since querySource has outputs, queryCursor is a CompoundCursor. The base ValueCursor of queryCursor has values from unitPrice, which is the base Source of the operation that created querySource. The values from unitPrice are those specified by the outputs. The outputs for queryCursor are a ValueCursor that has values from prodSel and a ValueCursor that has values from timeSel.

Figure 8-1 illustrates the structure of queryCursor. The base ValueCursor and the two output ValueCursor objects are the children of queryCursor, which is the parent CompoundCursor.

Figure 8-1 Structure of the queryCursor CompoundCursor

[image: Description of Figure 8-1 follows]

The following table displays the values from queryCursor in a table. The left column has time values, the middle column has product values, and the right column has the unit price of the product for the month.

	Month	Product	Price of Unit
	2001.01	ENVY ABM	3042.22
	2001.01	ENVY EXE	3223.28
	2001.01	ENVY STD	3042.22
	2001.04	ENVY ABM	2412.42
	2001.04	ENVY EXE	3107.65
	2001.04	ENVY STD	3026.12
	2001.07	ENVY ABM	2505.57
	2001.07	ENVY EXE	3155.91
	2001.07	ENVY STD	2892.18
	2001.10	ENVY ABM	2337.30
	2001.10	ENVY EXE	3105.53
	2001.10	ENVY STD	2856.86

For examples of getting the values from a ValueCursor, see Chapter 9.

Specifying the Behavior of a Cursor

CursorSpecification objects specify some aspects of the behavior of their corresponding Cursor objects. You must specify the behavior on a CursorSpecification before creating the corresponding Cursor. To specify the behavior, use the following CursorSpecification methods:

	
setDefaultFetchSize

	
setExtentCalculationSpecified

	
setParentEndCalculationSpecified

	
setParentStartCalculationSpecified

	
specifyDefaultFetchSizeOnChildren

(for a CompoundCursorSpecification only)

A CursorSpecification also has methods that you can use to discover if the behavior is specified. Those methods are the following:

	
isExtentCalculationSpecified

	
isParentEndCalculationSpecified

	
isParentStartCalculationSpecified

If you have used the CursorSpecification methods to set the default fetch size, or to calculate the extent or the starting or ending positions of a value in the parent of the value, then you can successfully use the following Cursor methods:

	
getExtent

	
getFetchSize

	
getParentEnd

	
getParentStart

	
setFetchSize

For examples of specifying Cursor behavior, see Chapter 9. For information on fetch sizes, see "About Fetch Sizes". For information on the extent of a Cursor, see "What is the Extent of a Cursor?". For information on the starting and ending positions in a parent Cursor of the current value of a Cursor, see "About the Parent Starting and Ending Positions in a Cursor".

CursorInfoSpecification Classes

The CursorInfoSpecification interface and the subinterfaces CompoundCursorInfoSpecification and ValueCursorInfoSpecification, specify methods for the abstract CursorSpecification class and the concrete CompoundCursorSpecification and ValueCursorSpecification classes. A CursorSpecification specifies certain aspects of the behavior of the Cursor that corresponds to it. You can create instances of classes that implement the CursorInfoSpecification interface either directly or indirectly.

You can create a CursorSpecification for a Source by calling the createCursorInfoSpecification method of a DataProvider. That method returns a CompoundCursorSpecification or a ValueCursorSpecification. You can use the methods of the CursorSpecification to specify aspects of the behavior of a Cursor. You can then use the CursorSpecification in creating a CursorManager by passing it as the cursorInfoSpec argument to the createCursorManager method of a DataProvider.

With CursorSpecification methods, you can do the following:

	
Get the Source that corresponds to the CursorSpecification.

	
Get or set the default fetch size for the corresponding Cursor.

	
Specify that Oracle OLAP should calculate the extent of a Cursor.

	
Determine whether calculating the extent is specified.

	
Specify that Oracle OLAP should calculate the starting or ending position of the current value of the corresponding Cursor in the parent Cursor. If you know the starting and ending positions of a value in the parent, then you can determine how many faster varying elements the parent Cursor has for that value.

	
Determine whether calculating the starting or ending position of the current value of the corresponding Cursor in the parent is specified.

	
Accept a CursorSpecificationVisitor.

For more information, see "About Cursor Positions and Extent" and "About Fetch Sizes".

In the oracle.olapi.data.source package, the Oracle OLAP Java API defines the classes described in the following table.

	Interface	Description
	CursorInfoSpecification	An interface that specifies methods for CursorSpecification objects.
	CursorSpecification	An abstract class that implements some methods of the CursorInfoSpecification interface.
	CompoundCursorSpecification	A CursorSpecification for a Source that has one or more outputs. A CompoundCursorSpecification has component child CursorSpecification objects.
	CompoundInfoCursorSpecification	An interface that specifies methods for CompoundCursorSpecification objects.
	ValueCursorSpecification	A CursorSpecification for a Source that has values and no outputs.
	ValueCursorInfoSpecification	An interface for ValueCursorSpecification objects.

A Cursor has the same structure as the CursorSpecification. Every ValueCursorSpecification or CompoundCursorSpecification has a corresponding ValueCursor or CompoundCursor. To be able to get certain information or behavior from a Cursor, your application must specify that it wants that information or behavior by calling methods of the corresponding CursorSpecification before it creates the Cursor.

CursorManager Class

With a CursorManager, you can create a Cursor for a Source. The class returned by one of the createCursorManager methods of a DataProvider manages the buffering of data for the Cursor objects it creates.

You can create more than one Cursor from the same CursorManager, which is useful for displaying data from a result set in different formats such as a table or a graph. All of the Cursor objects created by a CursorManager have the same specifications, such as the default fetch sizes. Because the Cursor objects have the same specifications, they can share the data managed by the CursorManager.

A SQLCursorManager has methods that return the SQL generated by the Oracle OLAP SQL generator for a Source. You create one or more SQLCursorManager objects by calling the createSQLCursorManager or createSQLCursorManagers methods of a DataProvider. You do not use a SQLCursorManager to create a Cursor. Instead, you use the SQL returned by the SQLCursorManager with classes outside of the OLAP Java API, or by other means, to retrieve the data specified by the query.

Updating the CursorInfoSpecification for a CursorManager

If your application is using OLAP Java API Template objects and the state of a Template changes in a way that alters the structure of the Source produced by the Template, then any CursorInfoSpecification objects for the Source are no longer valid. You need to create new CursorInfoSpecification objects for the changed Source.

After creating a new CursorInfoSpecification, you can create a new CursorManager for the Source. You do not, however, need to create a new CursorManager. You can call the updateSpecification method of the existing CursorManager to replace the previous CursorInfoSpecification with the new CursorInfoSpecification. You can then create a new Cursor from the CursorManager.

About Cursor Positions and Extent

A Cursor has one or more positions. The current position of a Cursor is the position that is currently active in the Cursor. To move the current position of a Cursor call the setPosition or next methods of the Cursor.

Oracle OLAP does not validate the position that you set on the Cursor until you attempt an operation on the Cursor, such as calling the getCurrentValue method. If you set the current position to a negative value or to a value that is greater than the number of positions in the Cursor and then attempt a Cursor operation, then the Cursor throws a PositionOutOfBoundsException.

The extent of a Cursor is described in "What is the Extent of a Cursor?".

Positions of a ValueCursor

The current position of a ValueCursor specifies a value, which you can retrieve. For example, prodSel, a derived Source described in "Structure of a Cursor", is a selection of three products from a primary Source that specifies a dimension of products and their hierarchical groupings. The ValueCursor for prodSel has three elements. The following example gets the position of each element of the ValueCursor, and displays the value at that position.

// prodSelValCursor is the ValueCursor for prodSel
println("ValueCursor Position Value ");
println("-------------------- ------------------------");
do
{
 println(" " + prodSelValCursor.getPosition() +
 " " + prodSelValCursor.getCurrentValue());
} while(prodSelValCursor.next());

The preceding example displays the following:

ValueCursor Position Value
-------------------- -------------------------------
 1 PRODUCT_PRIMARY::ITEM::ENVY ABM
 2 PRODUCT_PRIMARY::ITEM::ENVY EXE
 3 PRODUCT_PRIMARY::ITEM::ENVY STD

The following example sets the current position of prodSelValCursor to 2 and retrieves the value at that position.

prodSelValCursor.setPosition(2);
println(prodSelValCursor.getCurrentString());

The preceding example displays the following:

PRODUCT_PRIMARY::ITEM::ENVY EXE

For more examples of getting the current value of a ValueCursor, see Chapter 9.

Positions of a CompoundCursor

A CompoundCursor has one position for each set of the elements of the descendent ValueCursor objects. The current position of the CompoundCursor specifies one of those sets.

For example, querySource, the Source created in Example 8-1, has values from a measure, unitPrice. The values are the prices of product units at different times. The outputs of querySource are Source objects that represent selections of four month values from a time dimension and three product values from a product dimension.

The result set for querySource has one measure value for each tuple (each set of output values), so the total number of values is twelve (one value for each of the three products for each of the four months). Therefore, the queryCursor CompoundCursor created for querySource has twelve positions.

Each position of queryCursor specifies one set of positions of the outputs and the base ValueCursor. For example, position 1 of queryCursor defines the following set of positions for the outputs and the base ValueCursor:

	
Position 1 of output 1 (the ValueCursor for timeSel)

	
Position 1 of output 2 (the ValueCursor for prodSel)

	
Position 1 of the base ValueCursor for queryCursor (This position has the value from the unitPrice measure that is specified by the values of the outputs.)

Figure 8-2 illustrates the positions of queryCursor CompoundCursor, the base ValueCursor, and the outputs.

Figure 8-2 Cursor Positions in queryCursor

[image: Description of Figure 8-2 follows]

The ValueCursor for queryCursor has only one position because only one value of unitPrice is specified by any one set of values of the outputs. For a query such as querySource, the ValueCursor of the Cursor has only one value, and therefore only one position, at a time for any one position of the root CompoundCursor.

Figure 8-3 illustrates one possible display of the data from queryCursor. It is a crosstab view with four columns and five rows. In the left column are the month values. In the top row are the product values. In each of the intersecting cells of the crosstab is the price of the product for the month.

Figure 8-3 Crosstab Display of queryCursor

[image: Description of Figure 8-3 follows]

A CompoundCursor coordinates the positions of the ValueCursor objects relative to each other. The current position of the CompoundCursor specifies the current positions of the descendent ValueCursor objects. Example 8-2 sets the position of queryCursor and then gets the current values and the positions of the child Cursor objects.

Example 8-2 Setting the CompoundCursor Position and Getting the Current Values

CompoundCursor rootCursor = (CompoundCursor) queryCursor;
ValueCursor baseValueCursor = rootCursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor output1 = (ValueCursor) outputs.get(0);
ValueCursor output2 = (ValueCursor) outputs.get(1);
int pos = 5;
rootCursor.setPosition(pos);
println("CompoundCursor position set to " + pos + ".");
println("The current position of the CompoundCursor is = " +
 rootCursor.getPosition() + ".");
println("Output 1 position = " + output1.getPosition() +
 ", value = " + output1.getCurrentValue());
println("Output 2 position = " + output2.getPosition() +
 ", value = " + output2.getCurrentValue());
println("VC position = " + baseValueCursor.getPosition() +
 ", value = " + baseValueCursor.getCurrentValue());

Example 8-2 displays the following:

CompoundCursor position set to 5.
The current position of the CompoundCursor is 5.
Output 1 position = 2, value = CALENDAR_YEAR::MONTH::2001.04
Output 2 position = 2, value = PRODUCT_PRIMARY::ITEM::ENVY EXE
VC position = 1, value = 3107.65

The positions of queryCursor are symmetric in that the result set for querySource always has three product values for each time value. The ValueCursor for prodSel, therefore, always has three positions for each value of the timeSel ValueCursor. The timeSel output ValueCursor is slower varying than the prodSel ValueCursor.

In an asymmetric case, however, the number of positions in a ValueCursor is not always the same relative to the slower varying output. For example, if the price of units for product ENVY ABM for month 2001.10 were null because that product was no longer being sold by that date, and if null values were suppressed in the query, then queryCursor would only have eleven positions. The ValueCursor for prodSel would only have two positions when the position of the ValueCursor for timeSel was 4.

Example 8-3 demonstrates an asymmetric result set that is produced by selecting elements of one dimension based on a comparison of measure values. The example uses the same product and time selections as in Example 8-1. It uses a Source for a measure of product units sold, units, that is dimensioned by product, time, sales channels, and customer dimensions. The chanSel and custSel objects are selections of single values of the dimensions. The example produces a Source, querySource2, that specifies which of the selected products sold more than one unit for the selected time, channel, and customer values. Because querySource2 is a derived Source, this example commits the current Transaction.

The example creates a Cursor for querySource2, loops through the positions of the CompoundCursor, gets the position and current value of the first output ValueCursor and the ValueCursor of the CompoundCursor, and displays the positions and values of the ValueCursor objects. The getLocalValue method is a method in the program that extracts the local value from a unique value.

Example 8-3 Positions in an Asymmetric Query

// Create the query
prodSel.join(chanSel).join(custSel).join(timeSel).select(units.gt(1));

// Commit the current Transaction.
try
{ // The DataProvider is dp.
 (dp.getTransactionProvider()).commitCurrentTransaction();
}
catch(Exception e)
{
 output.println("Cannot commit current Transaction " + e);
}

// Create the CursorManager and the Cursor.
CursorManager cursorManager = dp.createCursorManager(querySource2);
Cursor queryCursor2 = cursorManager.createCursor();

CompoundCursor rootCursor = (CompoundCursor) queryCursor2;
ValueCursor baseValueCursor = rootCursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor output1 = (ValueCursor) outputs.get(0);

// Get the positions and values and display them.
println("CompoundCursor Output ValueCursor ValueCursor");
println(" position position | value position | value");
do
{
 println(sp6 + rootCursor.getPosition() + // sp6 is 6 spaces
 sp13 + output1.getPosition() + // sp13 is 13 spaces
 sp7 + getLocalValue(output1.getCurrentString()) + //sp7 is 7 spaces
 sp7 + baseValueCursor.getPosition() +
 sp7 + getLocalValue(baseValueCursor.getCurrentString()));
}
while(queryCursor2.next());

Example 8-3 displays the following:

CompoundCursor Output ValueCursor ValueCursor
 position position | value position | value
 1 1 2001.01 1 ENVY ABM
 2 1 2001.01 2 ENVY EXE
 3 1 2001.01 3 ENVY STD
 4 2 2001.04 1 ENVY ABM
 5 3 2001.07 1 ENVY ABM
 6 3 2001.07 2 ENVY EXE
 7 4 2001.10 1 ENVY EXE
 8 4 2001.10 2 ENVY STD

Because not every combination of product and time selections has unit sales greater than 1 for the specified channel and customer selections, the number of elements of the ValueCursor for the values derived from prodSel is not the same for each value of the output ValueCursor. For time value 2001.01, all three products have sales greater than one, but for time value 2001.04, only one of the products does. The other two time values, 2001.07 and 2001.10, have two products that meet the criteria. Therefore, the ValueCursor for the CompoundCursor has three positions for time 2001.01, only one position for time 2001.04, and two positions for times 2001.07 and 2001.10.

About the Parent Starting and Ending Positions in a Cursor

To effectively manage the display of the data that you get from a CompoundCursor, you sometimes need to know how many faster varying values exist for the current slower varying value. For example, suppose that you are displaying in a crosstab one row of values from an edge of a cube, then you might want to know how many columns to draw in the display for the row.

To determine how many faster varying values exist for the current value of a child Cursor, you find the starting and ending positions of that current value in the parent Cursor. Subtract the starting position from the ending position and then add 1, as in the following.

long span = (cursor.getParentEnd() - cursor.getParentStart()) + 1;

The result is the span of the current value of the child Cursor in the parent Cursor, which tells you how many values of the fastest varying child Cursor exist for the current value. Calculating the starting and ending positions is costly in time and computing resources, so you should only specify that you want those calculations performed when your application needs the information.

An Oracle OLAP Java API Cursor enables your application to have only the data that it is currently displaying actually present on the client computer. For information on specifying the amount of data for a Cursor, see "About Fetch Sizes".

From the data on the client computer, however, you cannot determine at what position of the parent Cursor the current value of a child Cursor begins or ends. To get that information, you use the getParentStart and getParentEnd methods of a Cursor.

To specify that you want Oracle OLAP to calculate the starting and ending positions of a value of a child Cursor in the parent Cursor, call the setParentStartCalculationSpecified and setParentEndCalculationSpecified methods of the CursorSpecification corresponding to the Cursor. You can determine whether calculating the starting or ending positions is specified by calling the isParentStartCalculationSpecified or isParentEndCalculationSpecified methods of the CursorSpecification. For an example of specifying these calculations, see Chapter 9.

What is the Extent of a Cursor?

The extent of a Cursor is the total number of elements it contains relative to any slower varying outputs.

The extent is information that you can use, for example, to display the correct number of columns or correctly-sized scroll bars. The extent, however, can be expensive to calculate. For example, a Source that represents a cube might have four outputs. Each output might have hundreds of values. If all null values and zero values of the measure for the sets of outputs are eliminated from the result set, then to calculate the extent of the CompoundCursor for the Source, Oracle OLAP must traverse the entire result space before it creates the CompoundCursor. If you do not specify that you wants the extent calculated, then Oracle OLAP only needs to traverse the sets of elements defined by the outputs of the cube as specified by the fetch size of the Cursor and as needed by your application.

To specify that you want Oracle OLAP to calculate the extent for a Cursor, call the setExtentCalculationSpecified method of the CursorSpecification corresponding to the Cursor. You can determine whether calculating the extent is specified by calling the isExtentCalculationSpecified method of the CursorSpecification. For an example of specifying the calculation of the extent of a Cursor, see Chapter 9.

About Fetch Sizes

An OLAP Java API Cursor represents the entire result set for a Source. The Cursor is a virtual Cursor, however, because it retrieves only a portion of the result set at a time from Oracle OLAP. A CursorManager manages a virtual Cursor and retrieves results from Oracle OLAP as your application needs them. By managing the virtual Cursor, the CursorManager relieves your application of a substantial burden.

The amount of data that a Cursor retrieves in a single fetch operation is determined by the fetch size specified for the Cursor. You specify a fetch size to limit the amount of data your application needs to cache on the local computer and to maximize the efficiency of the fetch by customizing it to meet the needs of your method of displaying the data.

You can also regulate the number of elements that Oracle OLAP returns by using Parameter and parameterized Source objects in constructing your query. For more information on Parameter objects, see Chapter 5, "Understanding Source Objects". For examples of using parameterized Source objects, see Chapter 6, "Making Queries Using Source Methods".

When you create a CursorManager for a Source, Oracle OLAP specifies a default fetch size on the root CursorSpecification. You can change the default fetch size with the setDefaultFetchSize method of the root CursorSpecification.

You can create two or more Cursor objects from the same CursorManager and use both Cursor objects simultaneously. Rather than having separate data caches, the Cursor objects can share the data managed by the CursorManager.

An example is an application that displays the results of a query to the user as both a table and a graph. The application creates a CursorManager for the Source. The application creates two separate Cursor objects from the same CursorManager, one for a table view and one for a graph view. The two views share the same query and display the same data, just in different formats. Figure 8-4 illustrates the relationship between the Source, the Cursor objects, and the views.

Figure 8-4 A Source and Two Cursors for Different Views of the Values

[image: Description of Figure 8-4 follows]

9 Retrieving Query Results

This chapter describes how to retrieve the results of a query with an Oracle OLAP Java API Cursor and how to gain access to those results. This chapter also describes how to customize the behavior of a Cursor to fit your method of displaying the results. For information on the class hierarchies of Cursor and its related classes, and for information on the Cursor concepts of position, fetch size, and extent, see Chapter 8, "Understanding Cursor Classes and Concepts".

This chapter includes the following topics:

	
Retrieving the Results of a Query

	
Navigating a CompoundCursor for Different Displays of Data

	
Specifying the Behavior of a Cursor

	
Calculating Extent and Starting and Ending Positions of a Value

	
Specifying a Fetch Size

Retrieving the Results of a Query

A query is an OLAP Java API Source that specifies the data that you want to retrieve from the data store and any calculations that you want Oracle OLAP to perform on the data. A Cursor is the object that retrieves, or fetches, the result set specified by a Source. Creating a Cursor for a Source involves the following steps:

	
Get a primary Source from an MdmObject or create a derived Source through operations on a DataProvider or a Source. For information on getting or creating Source objects, see Chapter 5, "Understanding Source Objects".

	
If the Source is a derived Source, then commit the Transaction in which you created the Source. To commit the Transaction, call the commitCurrentTransaction method of your TransactionProvider. For more information on committing a Transaction, see Chapter 7, "Using a TransactionProvider". If the Source is a primary Source, then you do not need to commit the Transaction.

	
Create a CursorManager by calling a createCursorManager method of your DataProvider and passing that method the Source.

	
Create a Cursor by calling the createCursor method of the CursorManager.

Example 9-1 creates a Cursor for the derived Source named querySource. The example uses a DataProvider named dp. The example creates a CursorManager named cursorMngr and a Cursor named queryCursor.

Finally, the example closes the CursorManager. When you have finished using the Cursor, you should close the CursorManager to free resources.

Example 9-1 Creating a Cursor

CursorManager cursorMngr = dp.createCursorManager(querySource);
Cursor queryCursor = cursorMngr.createCursor();

// Use the Cursor in some way, such as to display the values of it.

cursorMngr.close();

Getting Values from a Cursor

The Cursor interface encapsulates the notion of a current position and has methods for moving the current position. The ValueCursor and CompoundCursor interfaces extend the Cursor interface. The Oracle OLAP Java API has implementations of the ValueCursor and CompoundCursor interfaces. Calling the createCursor method of a CursorManager returns either a ValueCursor or a CompoundCursor implementation, depending on the Source for which you are creating the Cursor.

A ValueCursor is returned for a Source that has a single set of values. A ValueCursor has a value at its current position, and it has methods for getting the value at the current position.

A CompoundCursor is created for a Source that has more than one set of values, which is a Source that has one or more outputs. Each set of values of the Source is represented by a child ValueCursor of the CompoundCursor. A CompoundCursor has methods for getting its child Cursor objects.

The structure of the Source determines the structure of the Cursor. A Source can have nested outputs, which occurs when one or more of the outputs of the Source is itself a Source with outputs. If a Source has a nested output, then the CompoundCursor for that Source has a child CompoundCursor for that nested output.

The CompoundCursor coordinates the positions of the child Cursor objects that it contains. The current position of the CompoundCursor specifies one set of positions of the child Cursor objects.

For an example of a Source that has only one level of output values, see Example 9-4. For an example of a Source that has nested output values, see Example 9-5.

An example of a Source that represents a single set of values is one returned by the getSource method of an MdmDimension, such as an MdmPrimaryDimension that represents product values. Creating a Cursor for that Source returns a ValueCursor. Calling the getCurrentValue method returns the product value at the current position of that ValueCursor.

Example 9-2 gets the Source from mdmProdHier, which is an MdmLevelHierarchy that represents product values, and creates a Cursor for that Source. The example sets the current position to the fifth element of the ValueCursor and gets the product value from the Cursor. The example then closes the CursorManager. In the example, dp is the DataProvider.

Example 9-2 Getting a Single Value from a ValueCursor

Source prodSource = mdmProdHier.getSource();
// Because prodSource is a primary Source, you do not need to
// commit the current Transaction.
CursorManager cursorMngr = dp.createCursorManager(prodSource);
Cursor prodCursor = cursorMngr.createCursor();
// Cast the Cursor to a ValueCursor.
ValueCursor prodValues = (ValueCursor) prodCursor;
// Set the position to the fifth element of the ValueCursor.
prodValues.setPosition(5);

// Product values are strings. Get the value at the current position.
String value = prodValues.getCurrentString();

// Do something with the value, such as display it.

// Close the CursorManager.
cursorMngr.close();

Example 9-3 uses the same Cursor as Example 9-2. Example 9-3 uses a do...while loop and the next method of the ValueCursor to move through the positions of the ValueCursor. The next method begins at a valid position and returns true when an additional position exists in the Cursor. It also advances the current position to that next position.

The example sets the position to the first position of the ValueCursor. The example loops through the positions and uses the getCurrentValue method to get the value at the current position.

Example 9-3 Getting All of the Values from a ValueCursor

// prodValues is the ValueCursor for prodSource.
prodValues.setPosition(1);
do
{
 println(prodValues.getCurrentValue);
} while(prodValues.next());

The values of the result set represented by a CompoundCursor are in the child ValueCursor objects of the CompoundCursor. To get those values, you must get the child ValueCursor objects from the CompoundCursor.

An example of a CompoundCursor is one that is returned by calling the createCursor method of a CursorManager for a Source that represents the values of a measure as specified by selected values from the dimensions of the measure.

Example 9-4 uses a Source, named units, that results from calling the getSource method of an MdmBaseMeasure that represents the number of units sold. The dimensions of the measure are MdmPrimaryDimension objects representing products, customers, times, and channels. This example uses Source objects that represent selected values from the default hierarchies of those dimensions. The names of those Source objects are prodSel, custSel, timeSel, and chanSel. The creation of the Source objects representing the measure and the dimension selections is not shown.

Example 9-4 joins the dimension selections to the measure, which results in a Source named unitsForSelections. It creates a CompoundCursor, named unitsForSelCursor, for unitsForSelections, and gets the base ValueCursor and the outputs from the CompoundCursor. Each output is a ValueCursor, in this case. The outputs are returned in a List. The order of the outputs in the List is the inverse of the order in which the outputs were added to the list of outputs by the successive join operations. In the example, dp is the DataProvider.

Example 9-4 Getting ValueCursor Objects from a CompoundCursor

Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
// Commit the current Transaction (code not shown).

// Create a Cursor for unitsForSelections.
CursorManager cursorMngr = dp.createCursorManager(unitsForSelections);
CompoundCursor unitsForSelCursor = (CompoundCursor)
 cursorMngr.createCursor();

// Get the base ValueCursor.
ValueCursor specifiedUnitsVals = unitsForSelCursor.getValueCursor();

// Get the outputs.
List outputs = unitsForSelCursor.getOutputs();
ValueCursor chanSelVals = (ValueCursor) outputs.get(0);
ValueCursor timeSelVals = (ValueCursor) outputs.get(1);
ValueCursor custSelVals = (ValueCursor) outputs.get(2);
ValueCursor prodSelVals = (ValueCursor) outputs.get(3);

// You can now get the values from the ValueCursor objects.
// When you have finished using the Cursor objects, close the CursorManager.
cursorMngr.close();

Example 9-5 uses the same units measure as Example 9-4, but it joins the dimension selections to the measure differently. Example 9-5 joins two of the dimension selections together. It then joins the result to the Source produced by joining the single dimension selections to the measure. The resulting Source, unitsForSelections, represents a query has nested outputs, which means it has more than one level of outputs.

The CompoundCursor that this example creates for unitsForSelections therefore also has nested outputs. The CompoundCursor has a child base ValueCursor and has as outputs three child ValueCursor objects and one child CompoundCursor.

Example 9-5 joins the selection of channel dimension values, chanSel, to the selection of customer dimension values, custSel. The result is custByChanSel, a Source that has customer values as the base values and channel values as the values of the output. The example joins to units the selections of product and time values, and then joins custByChanSel. The resulting query is represented by unitsForSelections.

The example commits the current Transaction and creates a CompoundCursor, named unitsForSelCursor, for unitsForSelections.

The example gets the base ValueCursor and the outputs from the CompoundCursor. In the example, dp is the DataProvider.

Example 9-5 Getting Values from a CompoundCursor with Nested Outputs

Source custByChanSel = custSel.join(chanSel);
Source unitsForSelections = units.join(prodSel)
 .join(timeSel)
 .join(custByChanSel);
// Commit the current Transaction (code not shown).

// Create a Cursor for unitsForSelections.
CursorManager cursorMngr = dp.createCursorManager(unitsForSelections);
Cursor unitsForSelCursor = cursorMngr.createCursor();

// Send the Cursor to a method that does different operations
// depending on whether the Cursor is a CompoundCursor or a
// ValueCursor.
printCursor(unitsForSelCursor);
cursorMngr.close();
// The remaining code of someMethod is not shown.

// The following code is in from the CursorPrintWriter class.
// The printCursor method has a do...while loop that moves through the positions
// of the Cursor passed to it. At each position, the method prints the number of
// the iteration through the loop and then a colon and a space. The output
// object is a PrintWriter. The method calls the private _printTuple method and
// then prints a new line. A "tuple" is the set of output ValueCursor values
// specified by one position of the parent CompoundCursor. The method prints one
// line for each position of the parent CompoundCursor.
private void printCursor(Cursor rootCursor)
{
 int i = 1;
 do
 {
 print(i++ + ": ");
 _printTuple(rootCursor);
 println();
 flush();
 } while(rootCursor.next());
}

// If the Cursor passed to the _printTuple method is a ValueCursor, then
// the method prints the value at the current position of the ValueCursor.
// If the Cursor passed in is a CompoundCursor, then the method gets the
// outputs of the CompoundCursor and iterates through the outputs,
// recursively calling itself for each output. The method then gets the
// base ValueCursor of the CompoundCursor and calls itself again.
private void _printTuple(Cursor cursor)
{
 if(cursor instanceof CompoundCursor)
 {
 CompoundCursor compoundCursor = (CompoundCursor)cursor;
 // Put an open parenthesis before the value of each output.
 print("(");
 Iterator iterOutputs = compoundCursor.getOutputs().iterator();
 Cursor output = (Cursor)iterOutputs.next();
 _printTuple(output);
 while(iterOutputs.hasNext())
 {
 // Put a comma after the value of each output.
 print(",");
 _printTuple((Cursor)iterOutputs.next());
 }
 // Put a comma after the value of the last output.
 print(",");
 // Get the base ValueCursor.
 _printTuple(compoundCursor.getValueCursor());

 // Put a close parenthesis after the base value to indicate
 // the end of the tuple.
 print(")");
 }
 else if(cursor instanceof ValueCursor)
 {
 ValueCursor valueCursor = (ValueCursor) cursor;
 if (valueCursor.hasCurrentValue())
 print(valueCursor.getCurrentValue());
 else // If this position has a null value.
 print("NA");
 }
}

Navigating a CompoundCursor for Different Displays of Data

With the methods of a CompoundCursor you can easily move through, or navigate, the CompoundCursor structure and get the values from the ValueCursor descendents of the CompoundCursor. Data from a multidimensional OLAP query is often displayed in a crosstab format, or as a table or a graph.

To display the data for multiple rows and columns, you loop through the positions at different levels of the CompoundCursor depending on the needs of your display. For some displays, such as a table, you loop through the positions of the parent CompoundCursor. For other displays, such as a crosstab, you loop through the positions of the child Cursor objects.

To display the results of a query in a table view, in which each row contains a value from each output ValueCursor and from the base ValueCursor, you determine the position of the top-level, or root, CompoundCursor and then iterate through its positions. Example 9-6 displays only a portion of the result set at one time. It creates a Cursor for a Source that represents a query that is based on a measure that has unit cost values. The dimensions of the measure are the product and time dimensions. The creation of the primary Source objects and the derived selections of the dimensions is not shown.

The example joins the Source objects representing the dimension value selections to the Source representing the measure. It commits the current Transaction and then creates a Cursor, casting it to a CompoundCursor. The example sets the position of the CompoundCursor, iterates through twelve positions of the CompoundCursor, and prints out the values specified at those positions. The DataProvider is dp.

Example 9-6 Navigating for a Table View

Source unitPriceByMonth = unitPrice.join(productSel)
 .join(timeSel);
// Commit the current Transaction (code not shown).

// Create a Cursor for unitPriceByMonth.
CursorManager cursorMngr = dp.createCursorManager(unitPriceByMonth);
CompoundCursor rootCursor = (CompoundCursor) cursorMngr.createCursor();

// Determine a starting position and the number of rows to display.
int start = 7;
int numRows = 12;

println("Month Product Unit Price");
println("------- -------- ----------");

// Iterate through the specified positions of the root CompoundCursor.
// Assume that the Cursor contains at least (start + numRows) positions.
for(int pos = start; pos < start + numRows; pos++)
{
 // Set the position of the root CompoundCursor.
 rootCursor.setPosition(pos);
 // Print the local values of the output and base ValueCursors.
 // The getLocalValue method gets the local value from the unique
 // value of a dimension element.
 String timeValue = ((ValueCursor)rootCursor.getOutputs().get(0))
 .getCurrentString();
 String timeLocVal = getLocalValue(timeValue);
 String prodValue = ((ValueCursor)rootCursor.getOutputs().get(1))
 .getCurrentString();
 String prodLocVal = getLocalValue(prodValue);
 Object price = rootCursor.getValueCursor().getCurrentValue();
 println(timeLocVal + " " + prodLocVal + " " + price);
}
cursorMngr.close();

If the time selection for the query has eight values, such as the first month of each calendar quarter for the years 2001 and 2002, and the product selection has three values, then the result set of the unitPriceByMonth query has twenty-four positions. Example 9-6 displays the following table, which has the values specified by positions 7 through 18 of the CompoundCursor.

Month Product Unit Price
------- -------- ----------
2001.07 ENVY ABM 2892.18
2001.07 ENVY EXE 3155.91
2001.07 ENVY STD 2505.57
2001.10 ENVY ABM 2856.86
2001.10 ENVY EXE 3105.53
2001.10 ENVY STD 2337.3
2002.01 ENVY ABM 2896.77
2002.01 ENVY EXE 3008.95
2002.01 ENVY STD 2140.71
2002.04 ENVY ABM 2880.39
2002.04 ENVY EXE 2953.96
2002.04 ENVY STD 2130.88

Example 9-7 uses the same query as Example 9-6. In a crosstab view, the first row is column headings, which are the values from prodSel in this example. The output for prodSel is the faster varying output because the prodSel dimension selection is the last output in the list of outputs that results from the operations that join the measure to the dimension selections. The remaining rows begin with a row heading. The row headings are values from the slower varying output, which is timeSel. The remaining positions of the rows, under the column headings, contain the unitPrice values specified by the set of the dimension values. To display the results of a query in a crosstab view, you iterate through the positions of the children of the top-level CompoundCursor.

The DataProvider is dp.

Example 9-7 Navigating for a Crosstab View Without Pages

Source unitPriceByMonth = unitPrice.join(productSel)
 .join(timeSel);
// Commit the current Transaction (code not shown).

// Create a Cursor for unitPriceByMonth.
CursorManager cursorMngr = dp.createCursorManager(unitPriceByMonth);
CompoundCursor rootCursor = (CompoundCursor) cursorMngr.createCursor();

// Get the outputs and the ValueCursor objects.
List outputs = rootCursor.getOutputs();
// The first output has the values of timeSel, the slower varying output.
ValueCursor rowCursor = (ValueCursor) outputs.get(0);
// The second output has the faster varying values of productSel.
ValueCursor columnCursor = (ValueCursor) outputs.get(1);
// The base ValueCursor has the values from unitPrice.
ValueCursor unitPriceValues = rootCursor.getValueCursor();

// Display the values as a crosstab.
println(" PRODUCT");
println(" ---------------------------------");
print("Month ");
do
{
 String value = ((ValueCursor) columnCursor).getCurrentString();
 print(getContext().getLocalValue(value) + " ");
} while (columnCursor.next());
println("\n------- -------- -------- --------");

// Reset the column Cursor to its first element.
columnCursor.setPosition(1);

do
{
 // Print the row dimension values.
 String value = ((ValueCursor) rowCursor).getCurrentString();
 print(getContext().getLocalValue(value) + " ");
 // Loop over columns.
 do
 {
 // Print data value.
 print(unitPriceValues.getCurrentValue() + " ");
 } while (columnCursor.next());

 println();

 // Reset the column Cursor to its first element.
 columnCursor.setPosition(1);
 } while (rowCursor.next());

cursorMngr.close();

The following is a crosstab view of the values from the result set specified by the unitPriceByMonth query. The first line labels the rightmost three columns as having product values. The third line labels the first column as having month values and then labels each of the rightmost three columns with the product value for that column. The remaining lines have the month value in the left column and then have the data values from the units measure for the specified month and product.

 PRODUCT

Month ENVY ABM ENVY EXE ENVY STD
------- -------- -------- --------
2001.01 3042.22 3223.28 2426.07
2001.04 3026.12 3107.65 2412.42
2001.07 2892.18 3155.91 2505.57
2001.10 2856.86 3105.53 2337.30
2002.01 2896.77 3008.95 2140.71
2002.04 2880.39 2953.96 2130.88
2002.07 2865.14 3002.34 2074.56
2002.10 2850.88 2943.96 1921.62

Example 9-8 creates a Source that is based on a measure of units sold values. The dimensions of the measure are the customer, product, time, and channel dimensions. The Source objects for the dimensions represent selections of the dimension values. The creation of those Source objects is not shown.

The query that results from joining the dimension selections to the measure Source represents unit sold values as specified by the values of the outputs.

The example creates a Cursor for the query and then sends the Cursor to the printAsCrosstab method, which prints the values from the Cursor in a crosstab. That method calls other methods that print page, column, and row values.

The fastest-varying output of the Cursor is the selection of products, which has three values (the product items ENVY ABM, ENVY EXE, and ENVY STD). The product values are the column headings of the crosstab. The next fastest-varying output is the selection of customers, which has three values (the customers COMP SERV TOK, COMP WHSE LON, and COMP WHSE SD). Those three values are the row headings. The page dimensions are selections of three time values (the months 2000.01, 2000.02, and 2000.03), and one channel value (DIR, which is the direct sales channel).

The DataProvider is dp. The getLocalValue method gets the local value from a unique dimension value.

Example 9-8 Navigating for a Crosstab View With Pages

// In someMethod.
Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
// Commit the current Transaction (code not shown).

// Create a Cursor for unitsForSelections.
CursorManager cursorMngr = dp.createCursorManager(unitsForSelections);
CompoundCursor unitsForSelCursor = (CompoundCursor) cursorMngr.createCursor();

// Send the Cursor to the printAsCrosstab method.
printAsCrosstab(unitsForSelCursor);

cursorMngr.close();
// The remainder of the code of someMethod is not shown.

private void printAsCrosstab(CompoundCursor rootCursor)
{
 List outputs = rootCursor.getOutputs();
 int nOutputs = outputs.size();

 // Set the initial positions of all outputs.
 Iterator outputIter = outputs.iterator();
 while (outputIter.hasNext())
 ((Cursor) outputIter.next()).setPosition(1);

 // The last output is fastest-varying; it represents columns.
 // The next to last output represents rows.
 // All other outputs are on the page.
 Cursor colCursor = (Cursor) outputs.get(nOutputs - 1);
 Cursor rowCursor = (Cursor) outputs.get(nOutputs - 2);
 ArrayList pageCursors = new ArrayList();
 for (int i = 0 ; i < nOutputs - 2 ; i++)
 {
 pageCursors.add(outputs.get(i));
 }

 // Get the base ValueCursor, which has the data values.
 ValueCursor dataCursor = rootCursor.getValueCursor();

 // Print the pages of the crosstab.
 printPages(pageCursors, 0, rowCursor, colCursor, dataCursor);
}

// Prints the pages of a crosstab.
private void printPages(List pageCursors, int pageIndex, Cursor rowCursor,
 Cursor colCursor, ValueCursor dataCursor)
{
 // Get a Cursor for this page.
 Cursor pageCursor = (Cursor) pageCursors.get(pageIndex);

 // Loop over the values of this page dimension.
 do
 {
 // If this is the fastest-varying page dimension, print a page.
 if (pageIndex == pageCursors.size() - 1)
 {
 // Print the values of the page dimensions.
 printPageHeadings(pageCursors);

 // Print the column headings.
 printColumnHeadings(colCursor);

 // Print the rows.
 printRows(rowCursor, colCursor, dataCursor);

 // Print a couple of blank lines to delimit pages.
 println();
 println();
 }

 // If this is not the fastest-varying page, recurse to the
 // next fastest-varying dimension.
 else
 {
 printPages(pageCursors, pageIndex + 1, rowCursor, colCursor,
 dataCursor);
 }
 } while (pageCursor.next());

 // Reset this page dimension Cursor to its first element.
 pageCursor.setPosition(1);
}

// Prints the values of the page dimensions on each page.
private void printPageHeadings(List pageCursors)
{
 // Print the values of the page dimensions.
 Iterator pageIter = pageCursors.iterator();
 while (pageIter.hasNext())
 {
 String value = ((ValueCursor) pageIter.next()).getCurrentString();
 println(getLocalValue(value));
 }
 println();
}

// Prints the column headings on each page.
private void printColumnHeadings(Cursor colCursor)
{
 do
 {
 print("\t");
 String value = ((ValueCursor) colCursor).getCurrentString();
 print(getLocalValue(value));
 } while (colCursor.next());
 println();
 colCursor.setPosition(1);
}

// Prints the rows of each page.
private void printRows(Cursor rowCursor, Cursor colCursor,
 ValueCursor dataCursor)
{
 // Loop over rows.
 do
 {
 // Print row dimension value.
 String value = ((ValueCursor) rowCursor).getCurrentString();
 print(getLocalValue(value));
 print("\t");
 // Loop over columns.
 do
 {
 // Print data value.
 print(dataCursor.getCurrentValue());
 print("\t");
 } while (colCursor.next());
 println();

 // Reset the column Cursor to its first element.
 colCursor.setPosition(1);
 } while (rowCursor.next());

 // Reset the row Cursor to its first element.
 rowCursor.setPosition(1);
}

Example 9-8 displays the following values, formatted as a crosstab. The display has added page, column, and row headings to identify the local values of the dimensions.

Channel DIR
Month 2001.01
 Product

Customer ENVY ABM ENVY EXE ENVY STD
------------- -------- -------- --------
COMP WHSE SD 0 0 1
COMP SERV TOK 2 4 2
COMP WHSE LON 1 1 2

Channel DIR
Month 2000.02
 Product

Customer ENVY ABM ENVY EXE ENVY STD
------------- -------- -------- --------
COMP WHSE SD 1 1 1
COMP SERV TOK 5 6 6
COMP WHSE LON 1 2 2

Channel DIR
Month 2000.03
 Product

Customer ENVY ABM ENVY EXE ENVY STD
------------- -------- -------- --------
COMP WHSE SD 0 2 2
COMP SERV TOK 2 0 2
COMP WHSE LON 0 2 3

Specifying the Behavior of a Cursor

You can specify the following aspects of the behavior of a Cursor.

	
The fetch size of a Cursor, which is the number of elements of the result set that the Cursor retrieves during one fetch operation.

	
Whether or not Oracle OLAP calculates the extent of the Cursor. The extent is the total number of positions of the Cursor. The extent of a child Cursor of a CompoundCursor is relative to any of the slower varying outputs of the CompoundCursor.

	
Whether or not Oracle OLAP calculates the positions in the parent Cursor at which the value of a child Cursor starts or ends.

To specify the behavior of Cursor, you use methods of a CursorSpecification that you specify for that Cursor. A CursorSpecification implements the CursorInfoSpecification interface.

You create a CursorSpecification for a Source by calling the createCursorInfoSpecification method of the DataProvider. You use methods of the CursorSpecification to set the characteristics that you want. You then create a CursorManager by calling the appropriate createCursorManager method of the DataProvider.

	
Note:

Specifying the calculation of the extent or the starting or ending position in a parent Cursor of the current value of a child Cursor can be a very expensive operation. The calculation can require considerable time and computing resources. You should only specify these calculations when your application needs them.

For more information on the relationships of Source, Cursor, and CursorSpecification objects or the concepts of fetch size, extent, or Cursor positions, see Chapter 8.

Example 9-9 creates a Source, creates a CompoundCursorSpecification for a Source, and then gets the child CursorSpecification objects from the top-level CompoundCursorSpecification.

Example 9-9 Getting CursorSpecification Objects for a Source

Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
// Commit the current Transaction (code not shown).

// Create a CompoundCursorSpecification for unitsForSelections.
CompoundCursorSpecification rootCursorSpec = (CompoundCursorSpecification)
 dp.createCursorInfoSpecification(unitsForSelections);

// Get the ValueCursorSpecification for the base values.
ValueCursorSpecification baseValueSpec =
 rootCursorSpec.getValueCursorSpecification();

// Get the ValueCursorSpecification objects for the outputs.
List outputSpecs = rootCursorSpec.getOutputs();
ValueCursorSpecification chanSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(0);
ValueCursorSpecification timeSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(1);
ValueCursorSpecification prodSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(2);
ValueCursorSpecification custSelValCSpec =
 (ValueCursorSpecification) outputSpecs.get(3);

Once you have the CursorSpecification objects, you can use their methods to specify the behavior of the Cursor objects that correspond to them.

Calculating Extent and Starting and Ending Positions of a Value

To manage the display of the result set retrieved by a CompoundCursor, you sometimes need to know the extent of the child Cursor components. You might also want to know the position at which the current value of a child Cursor starts in the parent CompoundCursor. You might want to know the span of the current value of a child Cursor. The span is the number of positions of the parent Cursor that the current value of the child Cursor occupies. You can calculate the span by subtracting the starting position of the value from the ending position and subtracting 1.

Before you can get the extent of a Cursor or get the starting or ending positions of a value in the parent Cursor, you must specify that you want Oracle OLAP to calculate the extent or those positions. To specify the performance of those calculations, you use methods of the CursorSpecification for the Cursor.

Example 9-10 specifies calculating the extent of a Cursor. The example uses the CompoundCursorSpecification from Example 9-9.

Example 9-10 Specifying the Calculation of the Extent of a Cursor

rootCursorSpec.setExtentCalculationSpecified(true);

You can use methods of a CursorSpecification to determine whether the CursorSpecification specifies the calculation of the extent of a Cursor as in the following example.

boolean isSet = rootCursorSpec.isExtentCalculationSpecified();

Example 9-11 specifies calculating the starting and ending positions of the current value of a child Cursor in the parent Cursor. The example uses the CompoundCursorSpecification from Example 9-9.

Example 9-11 Specifying the Calculation of Starting and Ending Positions in a Parent

// Get the List of CursorSpecification objects for the outputs.
// Iterate through the list, specifying the calculation of the extent
// for each output CursorSpecification.
Iterator iterOutputSpecs = rootCursorSpec.getOutputs().iterator();
while(iterOutputSpecs.hasNext())
{
 ValueCursorSpecification valCursorSpec =
 (ValueCursorSpecification)iterOutputSpecs.next();
 valCursorSpec.setParentStartCalculationSpecified(true);
 valCursorSpec.setParentEndCalculationSpecified(true);
}

You can use methods of a CursorSpecification to determine whether the CursorSpecification specifies the calculation of the starting or ending positions of the current value of a child Cursor in a parent Cursor, as in the following example.

Iterator iterOutputSpecs = rootCursorSpec.getOutputs().iterator();
ValueCursorSpecification valCursorSpec =
 (ValueCursorSpecification)iterOutputSpecs.next();
while(iterOutputSpecs.hasNext())
{
 if (valCursorSpec.isParentStartCalculationSpecified())
 // Do something.
 if (valCursorSpec.isParentEndCalculationSpecified())
 // Do something.
 valCursorSpec = (ValueCursorSpecification) iterOutputSpecs.next();
}

Example 9-12 determines the span of the positions in a parent CompoundCursor of the current value of a child Cursor for two of the outputs of the CompoundCursor. The example uses the unitForSelections Source from Example 9-8.

The example gets the starting and ending positions of the current values of the time and product selections and then calculates the span of those values in the parent Cursor. The parent is the root CompoundCursor. The DataProvider is dp.

Example 9-12 Calculating the Span of the Positions in the Parent of a Value

Source unitsForSelections = units.join(prodSel)
 .join(custSel)
 .join(timeSel)
 .join(chanSel);
// Commit the current Transaction (code not shown).

// Create a CompoundCursorSpecification for unitsForSelections.
CompoundCursorSpecification rootCursorSpec = (CompoundCursorSpecification)
 dp.createCursorInfoSpecification(unitsForSelections);
// Get the CursorSpecification objects for the outputs.
List outputSpecs = rootCursorSpec.getOutputs();
ValueCursorSpecification timeSelValCSpec =
 (ValueCursorSpecification)outputSpecs.get(1); // Output for time.
ValueCursorSpecification prodSelValCSpec =
 (ValueCursorSpecification)outputSpecs.get(3); // Output for product.

// Specify the calculation of the starting and ending positions.
timeSelValCSpec.setParentStartCalculationSpecified(true);
timeSelValCSpec.setParentEndCalculationSpecified(true);
prodSelValCSpec.setParentStartCalculationSpecified(true);
prodSelValCSpec.setParentEndCalculationSpecified(true);

// Create the CursorManager and the Cursor.
CursorManager cursorMngr =
 dp.createCursorManager(unitsForSelections, 100, rootCursorSpec);
CompoundCursor rootCursor = (CompoundCursor) cursorMngr.createCursor();

// Get the child Cursor objects.
ValueCursor baseValCursor = cursor.getValueCursor();
List outputs = rootCursor.getOutputs();
ValueCursor chanSelVals = (ValueCursor) outputs.get(0);
ValueCursor timeSelVals = (ValueCursor) outputs.get(1);
ValueCursor custSelVals = (ValueCursor) outputs.get(2);
ValueCursor prodSelVals = (ValueCursor) outputs.get(3);

// Set the position of the root CompoundCursor.
rootCursor.setPosition(15);

// Get the values at the current position and determine the span
// of the values of the time and product outputs.
print(chanSelVals.getCurrentValue() + ", ");
print(timeSelVals.getCurrentValue() + ",\n ");
print(custSelVals.getCurrentValue() + ", ");
print(prodSelVals.getCurrentValue() + ", ");
print(baseValCursor.getCurrentValue());
println();

// Determine the span of the values of the two fastest-varying outputs.
long span;
span = (prodSelVals.getParentEnd() - prodSelVals.getParentStart()) +1);
println("\nThe span of " + prodSelVals.getCurrentValue() +
 " at the current position is " + span + ".")
span = (timeSelVals.getParentEnd() - timeSelVals.getParentStart()) +1);
println("The span of " + timeSelVals.getCurrentValue() +
 " at the current position is " + span + ".")
cursorMngr.close();

This example displays the following text.

CHANNEL_PRIMARY::CHANNEL::DIR, CALENDAR_YEAR::MONTH::2000.02,
 SHIPMENTS::SHIP_TO::COMP SERV TOK, PRODUCT_PRIMARY::ITEM::ENVY STD, 6.0

The span of PRODUCT_PRIMARY::ITEM::ENVY STD at the current position is 1.
The span of CALENDAR_YEAR::MONTH::2000.02 at the current position is 9.

Specifying a Fetch Size

The number of elements of a Cursor that Oracle OLAP sends to the client application during one fetch operation depends on the fetch size specified for that Cursor. The default fetch size is 100. To change the fetch size, you can set the fetch size on the root Cursor for a Source.

Example 9-13 gets the default fetch size from the CompoundCursorSpecification from Example 9-9. The example creates a Cursor and sets a different fetch size on it, and then gets the fetch size for the Cursor. The DataProvider is dp.

Example 9-13 Specifying a Fetch Size

println("The default fetch size is "
 + rootCursorSpec.getDefaultFetchSize() + ".");
Source source = rootCursorSpec.getSource();
CursorManager cursorMngr = dp.createCursorManager(source);
Cursor rootCursor = cursorMngr.createCursor();
rootCursor.setFetchSize(10);
println("The fetch size is now " + rootCursor.getFetchSize()) + ".";

This example displays the following text.

The default fetch size is 100.
The fetch size is now 10.

10 Creating Dynamic Queries

This chapter describes the Oracle OLAP Java API Template class and the related classes that you use to create dynamic queries. This chapter also provides examples of implementations of those classes.

This chapter includes the following topics:

	
About Template Objects

	
Overview of Template and Related Classes

	
Designing and Implementing a Template

About Template Objects

The Template class is the basis of a very powerful feature of the Oracle OLAP Java API. You use Template objects to create modifiable Source objects. With those Source objects, you can create dynamic queries that can change in response to end-user selections. Template objects also offer a convenient way for you to translate user-interface elements into OLAP Java API operations and objects.

These features are briefly described in the following topic. The rest of this chapter describes the Template class and the other classes you use to create dynamic Source objects. For information on the Transaction objects that you use to make changes to the dynamic Source and to either save or discard those changes, see Chapter 7, "Using a TransactionProvider".

About Creating a Dynamic Source

The main feature of a Template is the ability to produce a dynamic Source. That ability is based on two of the other objects that a Template uses: instances of the DynamicDefinition and MetadataState classes.

When a Source is created, Oracle OLAP automatically associates a SourceDefinition with it. The SourceDefinition has information about the Source. Once created, the Source and the associated SourceDefinition are associated immutably. The getSource method of a SourceDefinition returns the Source associated with it.

DynamicDefinition is a subclass of SourceDefinition. A Template creates a DynamicDefinition, which acts as a proxy for the SourceDefinition of the Source produced by the Template. This means that instead of always getting the same immutably associated Source, the getSource method of the DynamicDefinition gets whatever Source is currently produced by the Template. The instance of the DynamicDefinition does not change even though the Source that it gets is different.

The Source that a Template produces can change because the values, including other Source objects, that the Template uses to create the Source can change. A Template stores those values in a MetadataState. A Template provides methods to get the current state of the MetadataState, to get or set a value, and to set the state. You use those methods to change the data values that the MetadataState stores.

You use a DynamicDefinition to get the Source produced by a Template. If your application changes the state of the values that the Template uses to create the Source, for example, in response to end-user selections, then the application uses the same DynamicDefinition to get the Source again, even though the new Source defines a result set different than the previous Source.

The Source produced by a Template can be the result of a series of Source operations that create other Source objects, such as a series of selections, sortings, calculations, and joins. You put the code for those operations in the generateSource method of a SourceGenerator for the Template. That method returns the Source produced by the Template. The operations use the data stored in the MetadataState.

You might build an extremely complex query that involves the interactions of dynamic Source objects produced by many different Template objects. The end result of the query building is a Source that defines the entire complex query. If you change the state of any one of the Template objects that you used to create the final Source, then the final Source represents a result set that is different from that of the previous Source. You can thereby modify the final query without having to reproduce all of the operations involved in defining the query.

About Translating User Interface Elements into OLAP Java API Objects

You design Template objects to represent elements of the user interface of an application. Your Template objects turn the selections that the end user makes into OLAP Java API query-building operations that produce a Source. You then create a Cursor to fetch from Oracle OLAP the result set defined by the Source. You get the values from the Cursor and display them to the end user. When an end user makes changes to the selections, you change the state of the Template. You then get the Source produced by the Template, create a new Cursor, get the new values, and display them.

Overview of Template and Related Classes

In the OLAP Java API, several classes work together to produce a dynamic Source. In designing a Template, you must implement or extend the following:

	
The Template abstract class

	
The MetadataState interface

	
The SourceGenerator interface

Instances of those three classes, plus instances of the DataProvider and DynamicDefinition classes, work together to produce the Source that the Template defines.

What Is the Relationship Between the Classes That Produce a Dynamic Source?

The classes that produce a dynamic Source work together as follows:

	
A Template has methods that create a DynamicDefinition and that get and set the current state of a MetadataState. An extension to the Template abstract class adds methods that get and set the values of fields on the MetadataState.

	
The MetadataState implementation has fields for storing the data to use in generating the Source for the Template. When you create a new Template, you pass the MetadataState to the constructor of the Template. When you call the getSource method of the DynamicDefinition, the MetadataState is passed to the generateSource method of the SourceGenerator.

	
The DataProvider is used in creating a Template and by the SourceGenerator in creating new Source objects.

	
The SourceGenerator implementation has a generateSource method that uses the current state of the data in the MetadataState to produce a Source for the Template. You pass in the SourceGenerator to the createDynamicDefinition method of the Template to create a DynamicDefinition.

	
The DynamicDefinition has a getSource method that gets the Source produced by the SourceGenerator. The DynamicDefinition serves as a proxy for the SourceDefinition that is immutably associated with the Source.

Template Class

You use a Template to produce a modifiable Source. A Template has methods for creating a DynamicDefinition and for getting and setting the current state of the Template. In extending the Template class, you add methods that provide access to the fields on the MetadataState for the Template. The Template creates a DynamicDefinition that you use to get the Source produced by the SourceGenerator for the Template.

For an example of a Template implementation, see Example 10-1.

MetadataState Interface

An implementation of the MetadataState interface stores the current state of the values for a Template. A MetadataState must include a clone method that creates a copy of the current state.

When instantiating a new Template, you pass a MetadataState to the Template constructor. The Template has methods for getting and setting the values stored by the MetadataState. The generateSource method of the SourceGenerator for the Template uses the MetadataState when the method produces a Source for the Template.

For an example of a MetadataState implementation, see Example 10-2.

SourceGenerator Interface

An implementation of SourceGenerator must include a generateSource method, which produces a Source for a Template. A SourceGenerator must produce only one type of Source, such as a BooleanSource, a NumberSource, or a StringSource. In producing the Source, the generateSource method uses the current state of the data represented by the MetadataState for the Template.

To get the Source produced by the generateSource method, you create a DynamicDefinition by passing the SourceGenerator to the createDynamicDefinition method of the Template. You then get the Source by calling the getSource method of the DynamicDefinition.

A Template can create more than one DynamicDefinition, each with a differently implemented SourceGenerator. The generateSource methods of the different SourceGenerator objects use the same data, as defined by the current state of the MetadataState for the Template, to produce Source objects that define different queries.

For an example of a SourceGenerator implementation, see Example 10-3.

DynamicDefinition Class

DynamicDefinition is a subclass of SourceDefinition. You create a DynamicDefinition by calling the createDynamicDefinition method of a Template and passing it a SourceGenerator. You get the Source produced by the SourceGenerator by calling the getSource method of the DynamicDefinition.

A DynamicDefinition created by a Template is a proxy for the SourceDefinition of the Source produced by the SourceGenerator. The SourceDefinition is immutably associated with the Source. If the state of the Template changes, then the Source produced by the SourceGenerator is different. Because the DynamicDefinition is a proxy, you use the same DynamicDefinition to get the new Source even though that Source has a different SourceDefinition.

The getCurrent method of a DynamicDefinition returns the SourceDefinition immutably associated with the Source that the generateSource method currently returns. For an example of the use of a DynamicDefinition, see Example 10-4.

Designing and Implementing a Template

The design of a Template reflects the query-building elements of the user interface of an application. For example, suppose you want to develop an application that allows the end user to create a query that requests a number of values from the top or bottom of a list of values. The values are from one dimension of a measure. The other dimensions of the measure are limited to single values.

The user interface of your application has a dialog box that allows the end user to do the following:

	
Select a radio button that specifies whether the data values should be from the top or bottom of the range of values.

	
Select a measure from a drop-down list of measures.

	
Select a number from a field. The number specifies the number of data values to display.

	
Select one of the dimensions of the measure as the base of the data values to display. For example, if the user selects the product dimension, then the query specifies some number of products from the top or bottom of the list of products. The list is determined by the measure and the selected values of the other dimensions.

	
Click a button to bring up a dialog box through which the end user selects the single values for the other dimensions of the selected measure. After selecting the values of the dimensions, the end user clicks an OK button on the second dialog box and returns to the first dialog box.

	
Click an OK button to generate the query. The results of the query appear.

To generate a Source that represents the query that the end user creates in the first dialog box, you design a Template called TopBottomTemplate. You also design a second Template, called SingleSelectionTemplate, to create a Source that represents the end user's selections of single values for the dimensions other than the base dimension. The designs of your Template objects reflect the user interface elements of the dialog boxes.

In designing the TopBottomTemplate and its MetadataState and SourceGenerator, you do the following:

	
Create a class called TopBottomTemplate that extends Template. To the class, you add methods that get the current state of the Template, set the values specified by the user, and then set the current state of the Template.

	
Create a class called TopBottomTemplateState that implements MetadataState. You provide fields on the class to store values for the SourceGenerator to use in generating the Source produced by the Template. The values are set by methods of the TopBottomTemplate.

	
Create a class called TopBottomTemplateGenerator that implements SourceGenerator. In the generateSource method of the class, you provide the operations that create the Source specified by the end user's selections.

Using your application, an end user selects units sold as the measure and products as the base dimension in the first dialog box. The end user also selects the Asia Pacific region, the first quarter of 2001, and the direct sales channel as the single values for each of the remaining dimensions.

The query that the end user has created requests the ten products that have the highest total amount of units sold through the direct sales channel to customers in the Asia Pacific region during the calendar year 2001.

For examples of implementations of the TopBottomTemplate, TopBottomTemplateState, and TopBottomTemplateGenerator classes, and an example of an application that uses them, see Example 10-1, Example 10-2, Example 10-3, and Example 10-4. The TopBottomTemplateState and TopBottomTemplateGenerator classes are implemented as inner classes of the TopBottomTemplate outer class.

Implementing the Classes for a Template

Example 10-1 is an implementation of the TopBottomTemplate class.

Example 10-1 Implementing a Template

import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.DynamicDefinition;
import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.SourceGenerator;
import oracle.olapi.data.source.Template;
import oracle.olapi.transaction.metadataStateManager.MetadataState;

/**
 * Creates a TopBottomTemplateState, a TopBottomTemplateGenerator,
 * and a DynamicDefinition.
 * Gets the current state of the TopBottomTemplateState and the values
 * that it stores.
 * Sets the data values stored by the TopBottomTemplateState and sets the
 * changed state as the current state.
 */
public class TopBottomTemplate extends Template
{
// Constants for specifying the selection of elements from the
// beginning or the end of the result set.
 public static final int TOP_BOTTOM_TYPE_TOP = 0;
 public static final int TOP_BOTTOM_TYPE_BOTTOM = 1;

 // Variable to store the DynamicDefinition.
 private DynamicDefinition dynamicDef;

 /**
 * Creates a TopBottomTemplate with a default type and number values
 * and the specified base dimension.
 */
 public TopBottomTemplate(Source base, DataProvider dataProvider)
 {
 super(new TopBottomTemplateState(base, TOP_BOTTOM_TYPE_TOP, 0),
 dataProvider);
 // Create the DynamicDefinition for this Template. Create the
 // TopBottomTemplateGenerator that the DynamicDefinition uses.
 dynamicDef =
 createDynamicDefinition(new TopBottomTemplateGenerator(dataProvider));
 }

 /**
 * Gets the Source produced by the TopBottomTemplateGenerator
 * from the DynamicDefinition.
 */
 public final Source getSource()
 {
 return dynamicDef.getSource();
 }

 /**
 * Gets the Source that is the base of the elements in the result set.
 * Returns null if the state has no base.
 */
 public Source getBase()
 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 return state.base;
 }

 /**
 * Sets a Source as the base.
 */
 public void setBase(Source base)
 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 state.base = base;
 setCurrentState(state);
 }

 /**
 * Gets the Source that specifies the measure and the single
 * selections from the dimensions other than the base.
 */
 public Source getCriterion()
 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 return state.criterion;
 }

 /**
 * Specifies a Source that defines the measure and the single values
 * selected from the dimensions other than the base.
 * The SingleSelectionTemplate produces such a Source.
 */
 public void setCriterion(Source criterion)
 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 state.criterion = criterion;
 setCurrentState(state);
 }

 /**
 * Gets the type, which is either TOP_BOTTOM_TYPE_TOP or
 * TOP_BOTTOM_TYPE_BOTTOM.
 */
 public int getTopBottomType()
 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 return state.topBottomType;
 }

 /**
 * Sets the type.
 */
 public void setTopBottomType(int topBottomType)
 {
 if ((topBottomType < TOP_BOTTOM_TYPE_TOP) ||
 (topBottomType > TOP_BOTTOM_TYPE_BOTTOM))
 throw new IllegalArgumentException("InvalidTopBottomType");
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 state.topBottomType = topBottomType;
 setCurrentState(state);
 }

 /**
 * Gets the number of values selected.
 */
 public float getN()
 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 return state.N;
 }

 /**
 * Sets the number of values to select.
 */
 public void setN(float N)
 {
 TopBottomTemplateState state = (TopBottomTemplateState) getCurrentState();
 state.N = N;
 setCurrentState(state);
 }
}

Example 10-2 is an implementation of the TopBottomTemplateState inner class.

Example 10-2 Implementing a MetadataState

/**
 * Stores data that can be changed by a TopBottomTemplate.
 * The data is used by a TopBottomTemplateGenerator in producing
 * a Source for the TopBottomTemplate.
 */
private static final class TopBottomTemplateState
 implements Cloneable, MetadataState
{
 public int topBottomType;
 public float N;
 public Source criterion;
 public Source base;

 /**
 * Creates a TopBottomTemplateState.
 */
 public TopBottomTemplateState(Source base, int topBottomType, float N)
 {
 this.base = base;
 this.topBottomType = topBottomType;
 this.N = N;
 }

 /**
 * Creates a copy of this TopBottomTemplateState.
 */
 public final Object clone()
 {
 try
 {
 return super.clone();
 }
 catch(CloneNotSupportedException e)
 {
 return null;
 }
 }
}

Example 10-3 is an implementation of the TopBottomTemplateGenerator inner class.

Example 10-3 Implementing a SourceGenerator

/**
 * Produces a Source for a TopBottomTemplate based on the data
 * values of a TopBottomTemplateState.
 */
private final class TopBottomTemplateGenerator
 implements SourceGenerator
{
 // Store the DataProvider.
 private DataProvider _dataProvider;

 /**
 * Creates a TopBottomTemplateGenerator.
 */
 public TopBottomTemplateGenerator(DataProvider dataProvider)
 {
 _dataProvider = dataProvider;
 }

 /**
 * Generates a Source for a TopBottomTemplate using the current
 * state of the data values stored by the TopBottomTemplateState.
 */
 public Source generateSource(MetadataState state)
 {
 TopBottomTemplateState castState = (TopBottomTemplateState) state;
 if (castState.criterion == null)
 throw new NullPointerException("CriterionParameterMissing");
 Source sortedBase = null;

 // Depending on the topBottomType value, select from the base Source
 // the elements specified by the criterion Source and sort the
 // elements in ascending or descending order.
 // For descending order, specify that null values are last.
 // For ascending order, specify that null values are first.

 if (castState.topBottomType == TOP_BOTTOM_TYPE_TOP)
 sortedBase = castState.base.sortDescending(castState.criterion, false);
 else
 sortedBase = castState.base.sortAscending(castState.criterion, true);
 return sortedBase.interval(1, Math.round(castState.N));
 }
}

Implementing an Application That Uses Templates

After you have stored the selections made by the end user in the MetadataState for the Template, use the getSource method of the DynamicDefinition to get the dynamic Source created by the Template. This topic provides an example of an application that uses the TopBottomTemplate described in Example 10-1. For brevity, the code does not contain much exception handling.

The BaseExample11g class creates and stores an instance of the Context11g class, which has methods that do the following:

	
Connect to an Oracle Database instance as the user in the command line arguments.

	
Create Cursor objects and displays their values.

Example 10-4 does the following:

	
Gets the MdmMetadataProvider and the MdmRootSchema.

	
Gets the DataProvider.

	
Gets the MdmDatabaseSchema for the user.

	
Gets the MdmCube that has the COSTS, UNITS and SALES measures. From the cube, the example gets the UNITS and SALES measures and the dimensions associated with the cube.

	
Creates a SingleSelectionTemplate for selecting single values from some of the dimensions of the measure. For the code of the SingleSelectionTemplate class that this example uses, see Appendix B.

	
Creates a TopBottomTemplate and stores selections made by the end user.

	
Gets the Source produced by the TopBottomTemplate.

	
Uses the Context11g object to create a Cursor for that Source and to display the Cursor values.

The complete code for Example 7-3 includes some of the same code that is in Example 10-4. The example does not show this code, which extends from the beginning of Example 10-4 to the following comment in the example:

// End of code not shown in
//Example 7-3, "Using Child Transaction Objects".

Example 10-4 Getting the Source Produced by the Template

import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.Source;
import oracle.olapi.examples.*;
import oracle.olapi.metadata.mdm.MdmAttribute;
import oracle.olapi.metadata.mdm.MdmBaseMeasure;
import oracle.olapi.metadata.mdm.MdmCube;
import oracle.olapi.metadata.mdm.MdmDatabaseSchema;
import oracle.olapi.metadata.mdm.MdmDimensionLevel;
import oracle.olapi.metadata.mdm.MdmDimensionMemberInfo;
import oracle.olapi.metadata.mdm.MdmHierarchyLevel;
import oracle.olapi.metadata.mdm.MdmLevelHierarchy;
import oracle.olapi.metadata.mdm.MdmMetadataProvider;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;
import oracle.olapi.metadata.mdm.MdmRootSchema;

/**
 * Creates a query that specifies a number of elements from the top
 * or bottom of a selection of dimension members, creates a Cursor
 * for the query, and displays the values of the Cursor.
 * The selected dimension members are those that have measure values
 * that are specified by selected members of the other dimensions of
 * the measure.
 */
public class TopBottomTest extends BaseExample11g
{
 /**
 * Gets the MdmMetadataProvider, the DataProvider, the MdmRootSchema, and the
 * MdmDatabaseSchema for the current user.
 * Gets the UNITS_CUBE_AWJ MdmCube.
 * From the cube, gets the MdmBaseMeasure objects for the UNITS and SALES
 * measures and the MdmPrimaryDimension objects that dimension them.
 * Gets a hierarchy of the PRODUCT_AWJ dimension and the leaf level of the
 * dimension.
 * Gets the short description attribute of the dimension.
 * Creates a SingleSelectionTemplate and adds selections to it.
 * Creates a TopBottomTemplate and sets the properties of it.
 * Gets the Source produced by the TopBottomTemplate, creates a Cursor
 * for it, and displays the values of the Cursor.
 * Changes the state of the SingleSelectionTemplate and the
 * TopBottomTemplate, creates a new Cursor for the Source produced by the
 * TopBottomTemplate, and displays the values of that Cursor.
 */
 public void run() throws Exception
 {
 // Get the MdmMetadataProvider from the superclass.
 MdmMetadataProvider metadataProvider = getMdmMetadataProvider();
 // Get the DataProvider from the Context11g object of the superclass.
 DataProvider dp = getContext().getDataProvider();

 // Get the MdmRootSchema and the MdmDatabaseSchema for the user.
 MdmRootSchema mdmRootSchema =
 (MdmRootSchema)metadataProvider.getRootSchema();
 MdmDatabaseSchema mdmDBSchema =
 mdmRootSchema.getDatabaseSchema(getContext().getUser());

 MdmCube unitsCube =
 (MdmCube)mdmDBSchema.getTopLevelObject("UNITS_CUBE_AWJ");
 MdmBaseMeasure mdmUnits = unitsCube.findOrCreateBaseMeasure("UNITS");
 MdmBaseMeasure mdmSales = unitsCube.findOrCreateBaseMeasure("SALES");

 // Get the Source objects for the measures.
 Source units = mdmUnits.getSource();
 Source sales = mdmSales.getSource();

 // Get the MdmPrimaryDimension objects for the dimensions of the cube.
 List<MdmPrimaryDimension> cubeDims = unitsCube.getDimensions();
 MdmPrimaryDimension mdmTimeDim = null;
 MdmPrimaryDimension mdmProdDim = null;
 MdmPrimaryDimension mdmCustDim = null;
 MdmPrimaryDimension mdmChanDim = null;

 for(MdmPrimaryDimension mdmPrimDim : cubeDims)
 {
 if (mdmPrimDim.getName().startsWith("TIME"))
 mdmTimeDim = mdmPrimDim;
 else if (mdmPrimDim.getName().startsWith("PROD"))
 mdmProdDim = mdmPrimDim;
 else if (mdmPrimDim.getName().startsWith("CUST"))
 mdmCustDim = mdmPrimDim;
 else if (mdmPrimDim.getName().startsWith("CHAN"))
 mdmChanDim = mdmPrimDim;
 }

 // Get the hierarchy of the PRODUCT_AWJ dimension.
 MdmLevelHierarchy mdmProdHier =
 mdmProdDim.findOrCreateLevelHierarchy("PRODUCT_PRIMARY");

 // Get the detail dimenson level of the PRODUCT_AWJ dimension.
 MdmDimensionLevel mdmItemDimLevel =
 mdmProdDim.findOrCreateDimensionLevel("ITEM");
 // Get the hierarchy level of the dimension level.
 MdmHierarchyLevel mdmItemHierLevel =
 mdmProdHier.findOrCreateHierarchyLevel(mdmItemDimLevel);
 // Get the Source for the hierarchy level.
 Source itemLevel = mdmItemHierLevel.getSource();

 // Get the short description attribute for the PRODUCT_AWJ dimension and
 // the Source for the attribute.
 MdmAttribute mdmProdShortDescrAttr =
 mdmProdDim.getShortValueDescriptionAttribute();
 Source prodShortDescrAttr = mdmProdShortDescrAttr.getSource();

 // Create a SingleSelectionTemplate to produce a Source that
 // represents the measure values specified by single members of each of
 // the dimensions of the measure other than the base dimension.
 SingleSelectionTemplate singleSelections =
 new SingleSelectionTemplate(units, dp);

 // Create MdmDimensionMemberInfo objects for single members of the
 // other dimensions of the measure.
 MdmDimensionMemberInfo timeMemInfo =
 new MdmDimensionMemberInfo(mdmTimeDim, "CALENDAR_YEAR::YEAR::CY2001");
 MdmDimensionMemberInfo custMemInfo =
 new MdmDimensionMemberInfo(mdmCustDim, "SHIPMENTS::REGION::APAC");
 MdmDimensionMemberInfo chanMemInfo =
 new MdmDimensionMemberInfo(mdmChanDim, "CHANNEL_PRIMARY::CHANNEL::DIR");

 // Add the dimension member information objects to the
 // SingleSelectionTemplate.
 singleSelections.addDimMemberInfo(custMemInfo);
 singleSelections.addDimMemberInfo(chanMemInfo);
 singleSelections.addDimMemberInfo(timeMemInfo);

 // Create a TopBottomTemplate specifying, as the base, the Source for a
 // a level of a hierarchy.
 TopBottomTemplate topNBottom = new TopBottomTemplate(itemLevel, dp);

 // Specify whether to retrieve the elements from the beginning (top) or the
 // end (bottom) of the selected elements of the base dimension.
 topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);

 // Set the number of elements of the base dimension to retrieve.
 topNBottom.setN(10);
 // Get the Source produced by the SingleSelectionTemplate and specify it as
 // the criterion object.
 topNBottom.setCriterion(singleSelections.getSource());

 // End of code not shown in
 //Example 7-3, "Using Child Transaction Objects".

 // Display a description of the result.
 String resultDescription = " products with the most units sold \nfor";
 displayResultDescr(singleSelections, topNBottom, resultDescription);

 // Get the Source produced by the TopBottomTemplate.
 Source result = topNBottom.getSource();

 // Join the Source produced by the TopBottomTemplate with the short
 // value descriptions. Use the joinHidden method so that the
 // dimension member values do not appear in the result.
 Source result = prodShortDescrAttr.joinHidden(topNBottomResult);

 // Commit the current transaction.
 getContext().commit(); // Method of Context11g.

 // Create a Cursor for the result and display the values of the Cursor.
 getContext().displayTopBottomResult(result);

 // Change a dimension member selection of the SingleSelectionTemplate.
 timeMemInfo.setUniqueValue("CALENDAR_YEAR::YEAR::CY2000");
 singleSelections.changeSelection(timeMemInfo);

 // Change the number of elements selected and the type of selection.
 topNBottom.setN(5);
 topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);

 // Join the Source produced by the TopBottomTemplate to the short
 // description attribute.
 result = prodShortDescrAttr.joinHidden(topNBottomResult);

 // Commit the current transaction.
 getContext().commit();

 // Display a description of the result.
 resultDescription = " products with the fewest units sold \nfor";
 displayResultDescr(singleSelections, topNBottom, resultDescription);

 // Create a new Cursor for the Source produced by the TopBottomTemplate
 // and display the Cursor values.
 getContext().displayTopBottomResult(result);

 // Now change the measure to SALES, and get the top and bottom products by
 // SALES.
 singleSelections.setMeasure(sales);
 // Change the number of elements selected.
 topNBottom.setN(7);
 // Change the type of selection back to the top.
 topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_TOP);

 resultDescription = " products with the highest sales amounts \nfor";
 displayResultDescr(singleSelections, topNBottom, resultDescription);

 topNBottomResult = topNBottom.getSource();
 result = prodShortDescrAttr.joinHidden(topNBottomResult);

 // Commit the current transaction.
 getContext().commit();
 getContext().displayTopBottomResult(result);

 // Change the type of selection back to the bottom.
 topNBottom.setTopBottomType(TopBottomTemplate.TOP_BOTTOM_TYPE_BOTTOM);

 resultDescription = " products with the lowest sales amounts \nfor";
 displayResultDescr(singleSelections, topNBottom, resultDescription);

 topNBottomResult = topNBottom.getSource();
 result = prodShortDescrAttr.joinHidden(topNBottomResult);

 // Commit the current transaction.
 getContext().commit();
 getContext().displayTopBottomResult(result);

 }

 /**
 * Displays a description of the results of the query.
 *
 * @param singleSelections The SingleSelectionsTemplate used by the query.
 *
 * @param topNBottom The TopBottomTemplate used by the query.
 *
 * @param resultDescr A String that contains a description of the query.
 */
 private void displayResultDescr(SingleSelectionTemplate singleSelections,
 TopBottomTemplate topNBottom,
 String resultDescr)
 {
 DataProvider dp = getContext().getDataProvider();

 // Get the short descriptions of the dimension members of the
 // SingleSelectionTemplate.
 StringBuffer shortDescrsForMemberVals =
 singleSelections.getMemberShortDescrs(dp);

 // Display the number of dimension members selected, the result description,
 // and the short descriptions of the single selection dimension members.
 println("\nThe " + Math.round(topNBottom.getN()) + resultDescr
 + shortDescrsForMemberVals +" are:\n");
 }

 /**
 * Runs the TopBottomTest application.
 *
 * @param args An array of String objects that provides the arguments
 * required to connect to an Oracle Database instance, as
 * specified in the Context11g class.
 */
 public static void main(String[] args)
 {
 new TopBottomTest().execute(args);
 }

}

The TopBottomTest program produces the following output.

The 10 products with the most units sold
for Asia Pacific, Direct Sales, 2001 are:

 1. Mouse Pad
 2. Unix/Windows 1-user pack
 3. Deluxe Mouse
 4. Laptop carrying case
 5. 56Kbps V.90 Type II Modem
 6. 56Kbps V.92 Type II Fax/Modem
 7. Keyboard Wrist Rest
 8. Internal - DVD-RW - 6X
 9. O/S Documentation Set - English
10. External - DVD-RW - 8X

The 5 products with the fewest units sold
for Asia Pacific, Direct Sales, 2000 are:

 1. Envoy External Keyboard
 2. O/S Documentation Set - Italian
 3. External 48X CD-ROM
 4. O/S Documentation Set - Spanish
 5. Internal 48X CD-ROM USB

The 7 products with the highest sales amounts
for Asia Pacific, Direct Sales, 2000 are:

 1. Sentinel Financial
 2. Sentinel Standard
 3. Envoy Executive
 4. Sentinel Multimedia
 5. Envoy Standard
 6. Envoy Ambassador
 7. 56Kbps V.90 Type II Modem

The 7 products with the lowest sales amounts
for Asia Pacific, Direct Sales, 2000 are:

 1. Envoy External Keyboard
 2. Keyboard Wrist Rest
 3. Mouse Pad
 4. O/S Documentation Set - Italian
 5. O/S Documentation Set - Spanish
 6. Standard Mouse
 7. O/S Documentation Set - French

A Setting Up the Development Environment

This appendix describes the development environment for creating applications that use the OLAP Java API.

This appendix includes the following topics:

	
Overview

	
Required Class Libraries

	
Obtaining the Class Libraries

Overview

The OLAP Java API client software is a set of Java packages containing classes that implement a Java programming interface to Oracle OLAP. An Oracle Database with the OLAP option provides the OLAP Java API and other required class libraries as Java archive (JAR) files. As an application developer, you must copy the required JAR files to the computer on which you develop your Java application, or otherwise make them accessible to your development environment.

When a Java application calls methods of OLAP Java API objects, it uses the OLAP Java API client software to communicate with Oracle OLAP, which resides within an Oracle Database instance. The communication between the OLAP Java API client software and Oracle OLAP is provided through the Java Database Connectivity (JDBC) API, which is a standard Java interface for connecting to relational databases. Another required JAR file provides support for importing and exporting OLAP Java API metadata objects XML.

To use the OLAP Java API classes as you develop your application, import them into your Java code. When you deliver your application to users, include the OLAP Java API classes with the application. You must also ensure that users can access JDBC.

To develop an OLAP Java API application, you must have the Java Development Kit (JDK), such as one in Oracle JDeveloper. Users must have a Java Runtime Environment (JRE) whose version number is compatible with the JDK that you used for development.

Required Class Libraries

Your application development environment must have the following files:

	
The olap_api.jar file, which contains the OLAP Java API class libraries.

	
The ojdbc6.jar file, which is an Oracle JDBC (Java Database Connectivity) library that contains classes required to connect to an Oracle Database instance. The Oracle installation includes the JDBC file. You must use that JDBC file and not one from another Oracle product or from a product from another vender.

	
The xmlparserv2.jar file, which contains classes that provide XML parsing support.

	
The Java Development Kit (JDK) version 1.6. The Oracle Database installation does not provide the JDK. If you are using Oracle JDeveloper as your development environment, then the JDK is already installed on your computer. However, ensure that you are using the correct version of the JDK in JDeveloper. For information about obtaining and using some other JDK, see the Oracle Technology Network Java website at http://www.oracle.com/technetwork/java/index.html.

Obtaining the Class Libraries

Table A-1 lists the OLAP Java API and other JAR files that you must include in your application development environment. The table includes the locations of the files under the directory identified by the ORACLE_HOME environment variable on the system on which the Oracle Database is installed. You can copy these files to your application development computer, or otherwise include them in your development environment.

Table A-1 Required Class Libraries and Their Locations in the Oracle Installation

	Class Library jar File	Location under ORACLE_HOME
	
olap_api.jar

	
/olap/api/lib

	
ojdbc6jar

	
/jdbc/lib

	
xmlparserv2.jar

	
/lib

B SingleSelectionTemplate Class

This appendix contains the code for the SingleSelectionTemplate class. This class is used by the examples in Chapter 7, "Using a TransactionProvider", and Chapter 10, "Creating Dynamic Queries".

Code for the SingleSelectionTemplate Class

The following is the SingleSelectionTemplate.java class.

import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import oracle.olapi.data.cursor.CursorManager;
import oracle.olapi.data.cursor.ValueCursor;
import oracle.olapi.data.source.DataProvider;
import oracle.olapi.data.source.DynamicDefinition;
import oracle.olapi.data.source.Source;
import oracle.olapi.data.source.StringSource;
import oracle.olapi.data.source.SourceGenerator;
import oracle.olapi.data.source.Template;
import oracle.olapi.metadata.mdm.MdmAttribute;
import oracle.olapi.metadata.mdm.MdmDimensionMemberInfo;
import oracle.olapi.metadata.mdm.MdmHierarchy;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;
import oracle.olapi.transaction.TransactionProvider;
import oracle.olapi.transaction.NotCommittableException;
import oracle.olapi.transaction.metadataStateManager.MetadataState;

/**
 * A Template that joins Source objects for selected members of
 * dimension hierarchies to a Source for a measure.
 */
public class SingleSelectionTemplate extends Template
{
 // Variable to store the DynamicDefinition.
 private DynamicDefinition dynamicDef;

 /**
 * Creates a SingleSelectionTemplate.
 */
 public SingleSelectionTemplate(Source measure, DataProvider dataProvider)
 {
 super(new SingleSelectionTemplateState(measure), dataProvider);
 dynamicDef = createDynamicDefinition(
 new SingleSelectionTemplateGenerator(dataProvider));
 }

 /**
 * Gets the Source produced by the SingleSelectionTemplateGenerator
 * from the DynamicDefinition.
 */
 public final Source getSource()
 {
 return dynamicDef.getSource();
 }

 /**
 * Gets the Source for the measure stored by the SingleSelectionTemplateState.
 */
 public Source getMeasure()
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState)getCurrentState();
 return state.measure;
 }

 /**
 * Specifies the Source for the measure stored by the
 * SingleSelectionTemplateState.
 */
 public void setMeasure(Source measure)
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState)getCurrentState();
 state.measure = measure;
 setCurrentState(state);
 }

 /**
 * Gets the List of MdmDimensionMemberInfo objects for the selected members
 * of the dimensions.
 */
 public List getDimMemberInfos()
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState)getCurrentState();
 return Collections.unmodifiableList(state.dimMemberInfos);
 }

 /**
 * Adds an MdmDimensionMemberInfo to the List of
 * MdmDimensionMemberInfo objects.
 */
 public void addDimMemberInfo(MdmDimensionMemberInfo mdmDimMemberInfo)
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState)getCurrentState();
 state.dimMemberInfos.add(mdmDimMemberInfo);
 setCurrentState(state);
 }

 /**
 * Changes the member specified for a dimension.
 */
 public void changeSelection(MdmDimensionMemberInfo mdmDimMemberInfo)
 {
 SingleSelectionTemplateState state =
 (SingleSelectionTemplateState)getCurrentState();
 int i = 0;

 Iterator dimMemberInfosItr = state.dimMemberInfos.iterator();
 while (dimMemberInfosItr.hasNext())
 {
 MdmDimensionMemberInfo mdmDimMemberInfoInList =
 (MdmDimensionMemberInfo)dimMemberInfosItr.next();
 MdmPrimaryDimension mdmPrimDim1 = mdmDimMemberInfo.getPrimaryDimension();
 MdmPrimaryDimension mdmPrimDim2 =
 mdmDimMemberInfoInList.getPrimaryDimension();
 //String value = (String)valuesItr.next();
 if (mdmPrimDim1.getName().equals(mdmPrimDim2.getName()))
 {
 state.dimMemberInfos.remove(i);
 state.dimMemberInfos.add(i, mdmDimMemberInfo);
 break;
 }
 i++;
 }

 setCurrentState(state);
 }

 /**
 * Gets the short value description of the each of the dimension members
 * specified by the list of MdmDimensionMemberInfo objects and returns
 * the descriptions in a StringBuffer.
 */
 public StringBuffer getMemberShortDescrs(DataProvider dp)
 {
 boolean firsttime = true;

 List mdmDimMemInfoList = getDimMemberInfos();

 StringBuffer shortDescrForMemberVals = new StringBuffer(" ");
 Iterator mdmDimMemInfoListItr = mdmDimMemInfoList.iterator();

 while(mdmDimMemInfoListItr.hasNext())
 {
 MdmDimensionMemberInfo mdmDimMemInfo =
 (MdmDimensionMemberInfo)mdmDimMemInfoListItr.next();
 MdmPrimaryDimension mdmPrimDim = mdmDimMemInfo.getPrimaryDimension();
 MdmAttribute mdmShortDescrAttr =
 mdmPrimDim.getShortValueDescriptionAttribute();
 Source shortDescrAttr = mdmShortDescrAttr.getSource();
 MdmHierarchy mdmHier = mdmDimMemInfo.getHierarchy();
 StringSource hierSrc = (StringSource) mdmHier.getSource();
 Source memberSel = hierSrc.selectValue(mdmDimMemInfo.getUniqueValue());
 Source shortDescrForMember = shortDescrAttr.joinHidden(memberSel);

 // Commit the current transaction.
 try
 {
 (dp.getTransactionProvider()).commitCurrentTransaction();
 }
 catch (Exception ex)
 {
 println("Could not commit the Transaction. " + ex);
 }
 }

 CursorManager cmngr = dp.createCursorManager(shortDescrForMember);
 ValueCursor valCursor = (ValueCursor)cmngr.createCursor();

 String shortDescrForMemberVal = valCursor.getCurrentString();

 if(firsttime)
 {
 shortDescrForMemberVals.append(shortDescrForMemberVal);
 firsttime = false;
 }
 else
 {
 shortDescrForMemberVals.append(", " + shortDescrForMemberVal);
 }
 }

 return shortDescrForMemberVals;
 }

 /**
 * Inner class that implements the MetadataState object for this Template.
 * Stores data that can be changed by its SingleSelectionTemplate.
 * The data is used by a SingleSelectionTemplateGenerator in producing
 * a Source for the SingleSelectionTemplate.
 */
 private static class SingleSelectionTemplateState
 implements MetadataState
 {
 public Source measure;
 public ArrayList dimMemberInfos;

 /**
 * Creates a SingleSelectionTemplateState.
 */
 public SingleSelectionTemplateState(Source measure)
 {
 this(measure, new ArrayList());
 }

 private SingleSelectionTemplateState(Source measure,
 ArrayList dimMemberInfos)
 {
 this.measure = measure;
 this.dimMemberInfos = dimMemberInfos;
 }

 public Object clone()
 {
 return new SingleSelectionTemplateState(measure,
 (ArrayList)
 dimMemberInfos.clone());
 }
 }

 /**
 * Inner class that implements the SourceGenerator object for this Template.
 * Produces a Source based on the data values of a SingleSelectionTemplate.
 */
 private static final class SingleSelectionTemplateGenerator
 implements SourceGenerator
 {
 DataProvider dp = null;

 /**
 * Creates a SingleSelectionTemplateGenerator.
 */
 public SingleSelectionTemplateGenerator(DataProvider dataProvider)
 {
 dp = dataProvider;
 }

 /**
 * Generates a Source for the SingleSelectionTemplate.
 */
 public Source generateSource(MetadataState state)
 {
 SingleSelectionTemplateState castState =
 (SingleSelectionTemplateState)state;
 Source result = castState.measure;

 Iterator dimMemberInfosItr = castState.dimMemberInfos.iterator();
 while (dimMemberInfosItr.hasNext())
 {
 MdmDimensionMemberInfo mdmDimMemInfo =
 (MdmDimensionMemberInfo)dimMemberInfosItr.next();
 MdmHierarchy mdmHier = mdmDimMemInfo.getHierarchy();
 StringSource hierSrc = (StringSource) mdmHier.getSource();
 Source memberSel = hierSrc.selectValue(mdmDimMemInfo.getUniqueValue());
 // Join the Source objects for the selected dimension members
 // to the measure.
 result = result.joinHidden(memberSel);
 }
 return result;
 }
 }
}

Index

A?? B?? C?? D?? E?? F?? G?? H?? I?? J?? L?? M?? N?? O?? P?? Q?? R?? S?? T?? U?? V?? W?? X??

A

	access to metadata objects
	
	restricting, 2.3.2.2

	addObjectClassification method, 2.2.3
	aggregate levels of a hierarchy, 2.4.2.3.1
	AggregationCommand objects
	
	example of creating, 4.5.1

	alias method
	
	description, 6.1
	example of, 6.2.1

	ALL metadata reader mode, 2.2.1.3.2, 2.2.1.3.2
	Analytic Workspace Manager, 1.1.5
	analytic workspaces
	
	building, 1.1.5
	building, example of, 4.8
	creating, 4.2
	sample, 1.3

	ancestors attribute
	
	example of getting, 6.2.6.2
	method for getting, 2.4.2.3

	appendValues method, 5.4.4.5
	
	example of, 6.2.2

	applications
	
	requirements for developing, A.1
	typical tasks performed by, 1.4

	ascending
	
	comparison rules in a join operation, 5.4.1.3

	asymmetric result set, Cursor positions in an, 8.5.2
	at method
	
	example of, 6.3.3

	AttributeMap objects
	
	creating, 4.3.2

	attributes
	
	as dimensional data objects, 1.1.3
	creating, 4.4
	creating an index for, 2.4.3.2.3
	grouping, 2.4.3.2.2
	mapping, 4.4
	mapping, example of, 4.3.2
	multilingual, 2.4.3.2.5
	prefixes for in materialized views, 2.4.3.2.7
	represented by MdmAttribute objects, 2.4.3
	specifying language for, 2.4.3.2.4
	specifying target dimension for, 2.4.3.1.4
	unique key, 2.4.3.2.7

	AW objects
	
	creating, 4.2
	naming, 2.2.1.1

	AWCubeOrganization class, 2.4.1.1
	AWCubeOrganization objects
	
	example of creating, 4.5.1

	AWPrimaryDimensionOrganization objects
	
	creating, 4.3.1

B

	base Source
	
	definition, 5.3.3, 6.1
	of a join operation, 5.4.1

	BaseExample11g.java example program, 1.3
	BaseMetadataObject class, 2.2
	basic Source methods, 6.1
	bind variables
	
	in XML templates, 2.3.1.2.3

	Buildable interface, 2.4.2.1
	building analytic workspaces, 1.1.5
	
	example of, 4.8

	BuildItem objects
	
	creating, 4.8

	BuildProcess objects
	
	creating, 4.8

C

	Cartesian product
	
	result of joining unrelated Source objects, 5.4.1.1

	class libraries
	
	obtaining, A.3

	classifying metadata objects, 2.2.3
	ColumnExpression objects
	
	creating, 4.3.2

	committing transactions, 4.6
	comparison parameter
	
	of the join method, 5.4.1.2

	COMPARISON_RULE_ASCENDING
	
	example of, 6.2.5, 6.3.4

	COMPARISON_RULE_ASCENDING_NULLS_FIRST
	
	example of, 6.2.5

	COMPARISON_RULE_DESCENDING
	
	example of, 6.2.3

	COMPARISON_RULE_DESCENDING_NULLS_FIRST
	
	example of, 6.2.5

	COMPARISON_RULE_REMOVE
	
	description, 5.4.1.3
	example of, 5.4.2.3, 6.2.4, 6.2.6.2

	COMPARISON_RULE_SELECT
	
	description, 5.4.1.3
	example of, 5.4.2.2, 5.4.2.4, 5.4.4.4, 5.4.4.4

	comparisonRule parameter
	
	of a join method, 5.4.1.3

	CompoundCursor objects
	
	getting children of, example, 9.1.1
	navigating for a crosstab view, example, 9.2, 9.2
	navigating for a table view, example, 9.2
	positions of, 8.5.2

	connections
	
	closing, 3.1.3
	creating, 3.1.2.1
	prerequisites for, 3.1.1

	consistent cube, 2.4.1.1
	ConsistentSolveCommand objects
	
	contained by a ConsistentSolveSpecification, 2.4.1.1
	example of creating, 4.5.1

	ConsistentSolveSpecification objects
	
	associated with an MdmCube, 2.4.1.1

	container
	
	of a BaseMetadataObject, 2.2

	Context11g.java example program, 1.3
	count method
	
	example of, 5.4.4.2

	CreateAndBuildAW.java example program, 1.3
	createCursor method, 8.1.1
	
	example of, 6.3.7, 8.5.2, 9.1, 9.1.1

	createCursorManager method, 8.1.1, 8.4
	
	example of, 6.3.7, 8.5.2, 9.1

	createListSource method
	
	example of, 5.5, 6.3.1, 6.3.6, 6.3.6

	createParameterizedSource method
	
	example of, 5.5

	createRangeSource method
	
	example of, 6.2.4

	createRootTransaction method, 7.1
	createSource method, 5.5
	
	example of, 5.5, 6.3.2, 6.3.7

	createSQLCursorManager method, 8.4
	CreateValueHierarchy.java example program, 4.3.3.2
	crosstab view
	
	example of, 6.2.1
	navigating Cursor for, example, 9.2, 9.2

	CubeDimensionalityMap objects
	
	contained by a CubeMap, 2.4.1.1
	creating, 4.5.2

	CubeMap objects
	
	creating, 4.5.2
	specifying a Query for, 2.4.1.1

	CubeOrganization objects
	
	contained by an MdmCube, 2.4.1.1

	cubes
	
	as dimensional data objects, 1.1.3
	consistent, 2.4.1.1
	creating, 4.5.1
	example of, 6.3.2
	metadata object representing, 2.4.1.1

	current position in a Cursor, definition, 8.5
	current Transaction, 7.1, 7.1.6
	Cursor objects
	
	created in the current Transaction, 8.1.3
	creating, 8.1.1
	creating, example of, 6.3.2, 9.1
	current position, definition, 8.5
	CursorManager objects for creating, 8.4
	extent calculation, example, 9.4
	extent, definition, 8.5.4
	faster and slower varying components, 8.2.1
	fetch size, definition, 8.6
	getting children of, example, 9.1.1
	getting the values of, examples, 9.1.1
	parent starting and ending position, 8.5.3
	position, 8.5
	retrieving data with, 1.2.3
	Source objects for which you cannot create, 8.1.2
	span, definition, 8.5.3
	specifying fetch size for a table view, example, 9.5
	specifying the behavior of, 8.2.2, 9.3
	starting and ending positions of a value, example of calculating, 9.4
	structure, 8.2.1

	cursor package
	
	description, 1.1.2

	CursorInfoSpecification interface, 8.3
	CursorManager class, 8.4
	CursorManager objects
	
	closing before rolling back a Transaction, 7.2
	creating, 8.1.1
	creating, example of, 6.3.2, 9.1
	updating the CursorManagerSpecification, 8.4.1

	CursorPrintWriter.java example program, 1.3
	CursorSpecification class, 8.3
	CursorSpecification objects
	
	getting from a CursorManagerSpecification, example, 9.3

D

	data
	
	retrieving, 1.2.3, 8.1
	specifying, 1.2.1, 5.1

	data objects
	
	first-class, 2.3.1

	data store
	
	definition, 1.1.5
	exploring, 3.2.1
	gaining access to data in, 1.2, 2.4, 3.2
	scope of, 3.2

	data types
	
	converting, 6.1
	of Source objects, 5.3.2
	See also SQL data types

	data warehouse, 1.1.5
	database schemas
	
	represented by MdmDatabaseSchema objects, 2.3.2.2

	DataProvider objects
	
	creating, 3.1.2.2
	needed to create MdmMetadataProvider, 3.3

	deployment package
	
	description, 1.1.2

	derived Source objects
	
	definition, 5.2

	descending
	
	comparison rules in a join operation, 5.4.1.3

	descriptions
	
	metadata objects for, 2.2.2
	types provided by API, 2.2.2

	dimension levels
	
	mapping, 4.3.2
	metadata object for, 2.4.2.2

	dimensional data model
	
	associations between classes, 2.4
	description, 1.1.3
	designing an OLAP, 1.1.5
	implementing, 1.1.4
	objects corresponding to MDM objects, 2.1
	star schema as a, 1.1.5

	dimensioned Source
	
	definition, 5.4.3.1

	dimensions
	
	as dimensional data objects, 1.1.3
	creating, 4.3
	dimensioning measures, 2.4.2
	MdmDimension classes, 2.4.2
	MdmDimension objects, 4.3
	member value formatting, 1.2.2
	metadata objects representing, 2.4.2.1

	distinct method
	
	description, 6.1
	example of, 6.2.2

	div method
	
	example of, 6.3.5

	drilling in a hierarchy
	
	example of, 6.3.3

	dynamic queries, 10.1
	dynamic Source objects
	
	definition, 5.2
	example of getting, 10.3.2
	produced by a Template, 10.1.1

	DynamicDefinition class, 10.2.5

E

	edges of a cube
	
	creating, 4.3
	definition, 1.1.3
	pivoting, example of, 6.3.2

	elements
	
	of a Source, 5.3.1

	empty Source objects
	
	definition, 5.2

	EnableMVs.java example program, 2.4.3.2.7
	end date
	
	attribute, 2.4.3.1.1
	of a time dimension, 2.4.2.1

	ET views
	
	embedded total views for OLAP metadata objects, 2.4.4
	See also OLAP views

	example programs
	
	compressed file containing, 1.3
	sample schema for, 1.3

	executeBuild method
	
	example of, 4.8

	exportFullXML methods
	
	description, 2.3.1.2.1
	example of, 4.7

	exportIncrementalXML methods
	
	description, 2.3.1.2.1

	exporting XML templates, 2.3.1.2.1, 4.7
	Expression objects
	
	creating, 4.3.2
	example of, 4.5.2

	extent of a Cursor
	
	definition, 8.5.4
	example of calculating, 9.4
	use of, 8.5.4

	extract method, 5.4.3.2
	
	description, 6.3.1
	example of, 5.5, 6.3.1, 6.3.6, 6.3.6

	extraction input
	
	definition, 5.4.3.3

F

	faster varying Cursor components, 8.2.1
	fetch size of a Cursor
	
	definition, 8.6
	example of specifying, 9.5
	reasons for specifying, 8.6

	findOrCreateAttributeMap method, 2.4.3.2.4, 4.4
	
	example of, 4.3.2, 4.3.2

	findOrCreateAW method, 2.2.1.1
	
	example of, 4.2

	findOrCreateAWCubeOrganization method
	
	example of, 4.5.1

	findOrCreateAWPrimaryDimensionOrganization method
	
	example of, 4.3.1

	findOrCreateBaseAttribute method
	
	description, 2.4.3.2
	example of, 4.4

	findOrCreateBaseMeasure method, 2.4.1.1
	
	example of, 2.4.4.4, 4.5.2

	findOrCreateCube method
	
	example of, 2.4.4.1, 4.5.1

	findOrCreateCubeDimensionalityMap method
	
	example of, 4.5.2

	findOrCreateDerivedMeasure method, 2.4.1.1
	findOrCreateDescription method, 2.2.2, 2.2.2
	findOrCreateDimensionLevel method, 2.4.2.2
	
	example of, 4.3.2, 4.3.2

	findOrCreateHierarchyLevel method
	
	example of, 4.3.3.1

	findOrCreateLevelHierarchy method
	
	example of, 2.4.4.3

	findOrCreateMeasureMap method
	
	example of, 4.5.2

	findOrCreateMemberListMap method
	
	example of, 4.3.2

	findOrCreateStandardDimension method, 2.2.1.3.2
	
	example of, 4.3.1

	first-class data objects, 2.3.1
	fromSyntax method
	
	example of, 4.3.2

	fundamental Source objects
	
	definition, 5.2
	for data types, 5.3.2

	FundamentalMetadataObject class
	
	representing data types, 5.3.2

	FundamentalMetadataProvider objects
	
	example of, 5.3.2

G

	generated SQL, getting, 8.1
	getAncestorsAttribute method, 2.4.2.3
	getAttributeGroupName method, 2.4.3.2.2
	getContainedByObject method, 2.2
	getDataType method
	
	of a Source, 5.3.2
	of a Source, example of, 6.2.3, 6.2.5, 6.3.4

	getEmptySource method, 5.2
	
	example of, 5.4.2.1

	getETAttributeColumn method, 2.4.3.2
	getID method
	
	example of, 5.5
	of a BaseMetadataObject, 2.2.1.2
	of a Source, 5.3.4

	getInputs method, 5.4.3
	getLevelAttribute method
	
	example of, 6.2.4

	getMdmMetadataProvider method
	
	example of, 3.3

	getMetadataObject method, 2.3.1.1
	getMetadataObjects method, 2.3.1.1
	getNewName method, 2.2.1.1
	getOutputs method, 5.4.2
	getOwner method, 2.2
	getParentAttribute method, 2.4.2.3
	getRootSchema method, 2.3.1
	getSource method
	
	example of, 3.7, 6.2.4, 6.3.3
	for getting Source produced by a Template, example, 10.3.2
	in DynamicDefinition class, 10.1.1, 10.2.5

	getTopLevelObject method, 2.3.2.2
	
	example of, 4.5.2

	getType method, 5.3.3
	getValidNamespaces method, 2.2.1.3.2
	getVoidSource method, 5.2
	Global schema for example programs, 1.3
	GLOBAL_AWJ sample analytic workspace, 1.3
	grouping attributes, 2.4.3.2.2
	gt method
	
	of a Source, example of, 6.2.1

H

	hierarchical sorting
	
	example of, 6.3.4

	hierarchies
	
	as dimensional data objects, 1.1.3
	creating, 4.3.3
	lineage in materialized views, 2.4.1.1
	lineage in OLAP views, 2.4.3.2.6
	ragged, 2.4.2.3.1
	skip-level, 2.4.2.3.1

I

	ID
	
	getting metadata objects by, 2.3.1.1
	of a metadata object, 2.2.1.2
	of a Source, 5.3.4
	See also unique identifiers

	importing XML templates, 2.3.1.2.2, 4.7
	importXML methods
	
	description, 2.3.1.2.2

	indexes
	
	for attributes, 2.4.3.2.3

	inputs
	
	of a derived Source, 5.4.3.2
	of a primary Source, 5.4.3.1
	of a Source
	
	definition, 5.4.3
	deriving with the value method, 5.4.4.3, 5.4.4.4
	matching with a Source, 5.4.4
	obtaining, 5.4.3
	types of, 5.4.3.3

	interval method
	
	example of, 6.3.7

	isSubType method
	
	example of, 5.3.3

J

	Java archive (JAR) files, required, A.2
	Java Development Kit, version required, A.2
	JDBC
	
	creating connections, 3.1.2.1
	libraries required, A.2

	join method
	
	description, 5.4.1, 6.1
	examples of, 6.2
	full signature, 5.4.1
	rules governing matching an input with a Source, 5.4.4

	joined parameter
	
	of a join method, 5.4.1.1

	joinHidden method
	
	example of, 5.4.2.5, 6.3.5, 6.3.6

L

	lag method
	
	example of, 6.3.6

	languages
	
	specifying for an attribute, 2.4.3.2.4

	leaves of a hierarchy
	
	defined, 2.4.2.3.1

	legacy metadata objects
	
	namespaces for, 2.2.1.3.2
	supporting, 2.2.1.3

	level-based hierarchy, 2.4.2.3.1
	levels
	
	as dimensional data objects, 1.1.3
	creating, 4.3.3
	MdmDimensionLevel objects, 2.4.2.2

	lineage
	
	populating attribute hierarchy values, 2.4.3.2.6

	list Source objects
	
	definition, 5.2
	example of creating, 6.2.4

	local dimension member values, 1.2.2

M

	mapping
	
	dimension levels, 4.3.2
	hierarchy levels, 4.3.3
	measures, 4.5.2
	objects contained by an MdmCube, 2.4.1.1

	mapping package
	
	description, 1.1.2

	matching an input with a Source
	
	example of, 5.4.4.2, 5.4.4.4
	rules governing, 5.4.4

	materialized views
	
	for a cube, 2.4.1.1
	for OLAP metadata, 2.4.3.2.7
	including hierarchy lineage, 2.4.1.1
	populating attribute hierarchy lineage for, 2.4.3.2.6
	prefixes for attribute columns in, 2.4.3.2.7

	MDM metadata model
	
	description, 2.1

	mdm package
	
	description, 1.1.2

	MdmAttribute objects
	
	creating, 4.4
	description, 2.4.3
	example of the values of, 2.4.3
	inputs of, 5.4.3.1

	MdmBaseAttribute class
	
	description, 2.4.3.2

	MdmBaseAttribute objects
	
	creating, 2.4.3.2, 4.4
	mapping, 2.4.3.2, 4.4
	mapping, example of, 4.3.2

	MdmBaseMeasure objects
	
	creating, 4.5.2
	description, 2.4.1.2

	MdmCube class
	
	description, 2.4.1.1

	MdmCube objects
	
	associations, 2.4.1.1
	corresponding to a fact table or view, 2.4.1.1
	example of creating, 4.5.1

	MdmDatabaseSchema objects
	
	creating, 4.2
	definition, 2.3.2.2
	owner of top-level objects, 2.3.1

	MdmDerivedAttribute class
	
	description, 2.4.3.3

	MdmDerivedMeasure objects
	
	description, 2.4.1.2

	MdmDescription objects, 2.2.2
	
	associations, 2.2.2

	MdmDescriptionType objects
	
	associations, 2.2.2
	creating, 2.2.2

	MdmDimension classes
	
	description, 2.4.2

	MdmDimension objects
	
	creating, 4.3
	example of getting related objects, 3.6.1, 3.6.2
	related MdmAttribute objects, 2.4.3

	MdmDimensionLevel objects
	
	creating, 4.3.2
	description, 2.4.2.2

	MdmHierarchy class, 2.4.2.3
	MdmHierarchy objects
	
	creating, 4.3.3

	MdmHierarchyLevel class
	
	description, 2.4.2.4

	MdmHierarchyLevel objects
	
	creating, 4.3.3
	mapping, 4.3.3

	MdmLevelHierarchy objects
	
	creating, 4.3.3
	description, 2.4.2.3.1

	MdmMeasure objects
	
	creating, 4.5.2
	description, 2.4.1.2
	inputs of, 5.4.3.1
	origin of values, 2.4.1.2

	MdmMemberListMapOwner interface
	
	implemented by MdmPrimaryDimension, 2.4.2.1

	MdmMetadataProvider class
	
	associations with MdmSchema subclasses, 2.3.2.1

	MdmMetadataProvider objects
	
	creating, 3.3
	description, 2.3.1, 3.3

	MdmObject class
	
	10g accessor methods for descriptions, 2.2.2
	11g methods for descriptions, 2.2.2
	associations with descriptions, 2.2.2

	MdmOrganizationalSchema objects
	
	description, 2.3.2.3

	MdmPrimaryDimension class
	
	interfaces implemented by, 2.4.2.1

	MdmPrimaryDimension objects
	
	creating, 4.3.1
	description, 2.4.2.1, 2.4.2.1

	MdmQuery interface
	
	implemented by MdmPrimaryDimension, 2.4.2.1

	MdmRootSchema class, 2.3.1
	MdmRootSchema objects
	
	description, 2.3.2.1

	MdmSchema class
	
	associations between subclass and MdmMetadataProvider, 2.3.2.1

	MdmSchema objects
	
	getting contents of, 3.5
	subclasses of, 2.3.2

	MdmSingleValuedAttribute class
	
	description, 2.4.3.1

	MdmSource class, 2.4
	MdmStandardDimension objects
	
	creating, 4.3.1
	description, 2.4.2.1

	MdmSubDimension class, 2.4.2.1
	MdmTable objects
	
	getting, 2.3.2.2, 4.5.2

	MdmTimeDimension objects
	
	creating, 4.3.1
	description, 2.4.2.1

	MdmValueHierarchy class
	
	description, 2.4.2.3.2

	MdmValueHierarchy objects
	
	example of, 4.3.3.2

	MdmViewColumn class, 2.2
	MdmViewColumn objects, 2.4.3.2
	MdmViewColumnOwner interface, 2.2
	
	implemented by MdmPrimaryDimension, 2.4.2.1

	measure folders
	
	represented by MdmOrganizationalSchema objects, 2.3.2.3

	MeasureMap objects
	
	contained by a CubeMap, 2.4.1.1
	creating, 4.5.2

	measures
	
	as dimensional data objects, 1.1.3
	creating, 4.5.2
	dimensioned by dimensions, 2.4.2
	getting values from, 5.4.4.2
	MdmMeasure objects representing, 2.4.1.2
	sources of data for, 2.4.1.2

	MemberListMap objects
	
	creating, 4.3.2

	members
	
	of an MdmDimension, 2.4.2
	of an MdmDimensionLevel, 2.4.2.2

	metadata
	
	creating, 4.1
	creating a provider, 3.3
	discovering, 3.2
	mapping, 4.1

	metadata model
	
	implementing, 1.1.5
	MDM, 2.1

	metadata objects
	
	classifying, 2.2.3
	creating OLAP, 1.1.5
	getting and setting names for, 2.2.1.1
	getting by ID, 2.3.1.1
	in example programs, 1.3
	OLAP, 1.2
	renaming, 2.2.1.1
	representing data sources, 2.4
	restricting access to, 2.3.2.2
	supporting legacy, 2.2.1.3
	top-level, 2.3.2.2
	unique identifiers of, 2.2.1.2

	metadata package
	
	description, 1.1.2
	subpackages, 2.1

	metadata reader modes, 2.2.1.3.1
	MetadataObject interface
	
	implemented by MdmPrimaryDimension, 2.4.2.1

	MetadataState class, 10.2.3
	
	example of implementation, 10.3.1

	movingTotal method
	
	example of, 6.3.6

	multidimensional metadata objects
	
	corresponding to dimensional data model objects, 2.1
	corresponding to relational objects, 2.1

	multilingual attributes, 2.4.3.2.5
	multiple user sessions, 1.1.1

N

	names
	
	getting and setting for metadata objects, 2.2.1.1

	namespaces
	
	description, 2.2.1.3.2

	nested outputs
	
	getting values from a Cursor with, example, 9.1.1
	of a Source, definition, 9.1.1

	null Source objects
	
	definition, 5.2

	nullSource method, 5.2
	NumberParameter objects
	
	example of, 6.3.7

O

	ojdbc6.jar file, A.3
	OLAP Java API
	
	description, 1.1
	required class libraries, A.2
	sample schema for examples, 1.3
	software components, A.1
	uses of, 1.1.1, 1.4

	OLAP metadata, 1.1.5
	OLAP metadata objects, 1.2
	OLAP views
	
	description, 2.4.4
	getting name of cube view, 2.4.4.1
	getting name of dimension or hierarchy view, 2.4.4.2
	populating attribute hierarchy lineage in, 2.4.3.2.6

	olap_api.jar file, A.3
	Oracle OLAP
	
	database administration and management tasks related to, 1.1

	Oracle Technology Network (OTN), 1.3
	ORACLE_HOME environment variable, A.3
	OracleConnection objects
	
	creating, 3.1.2.1

	OracleDataSource objects
	
	creating, 3.1.2.1

	outputs
	
	getting from a CompoundCursor, example, 9.1.1
	getting from a CompoundCursorSpecification, example, 9.3
	getting nested, example, 9.1.1
	in a CompoundCursor, 8.2.1, 8.5.4
	
	positions of, 8.5.2

	of a Source
	
	definition, 5.4.2
	hiding, 5.4.2.5
	obtaining, 5.4.2
	order of, 6.2.1
	producing, 5.4.2.1

	owner
	
	of a BaseMetadataObject, 2.2

P

	package attribute
	
	MdmAttribute for the PRODUCT_AWJ dimension, 2.4.3

	packages
	
	in the OLAP Java API, 1.1.2
	metadata, 2.1

	Parameter objects
	
	description, 5.5
	example of, 5.5, 6.3.2, 6.3.7

	parameterized Source objects
	
	definition, 5.2
	description, 5.5
	example of, 5.5, 6.3.2, 6.3.7

	parent attribute
	
	method for getting, 2.4.2.3

	parent-child relationships
	
	in a level hierarchy, 2.4.2.3
	in hierarchies, 2.4.2.3

	pivoting cube edges, example of, 6.3.2
	position method, 5.4.3.2
	
	description, 6.1
	example of, 6.2.4

	positions
	
	of a CompoundCursor, 8.5.2
	of a Cursor, 8.5
	of a ValueCursor, 8.5.1
	parent starting and ending, 8.5.3

	prefixes
	
	for attribute column in materialized view, 2.4.3.2.7

	primary Source objects
	
	definition, 5.2
	result of getSource method, 3.7

	privileges
	
	specifying, 1.1.5

Q

	queries
	
	creating using Source methods, 6
	definition, 1.1.3
	dynamic, 10.1
	represented by Source objects, 1.2.1, 5.1
	retrieving data specified by, 1.2.3
	Source objects that are not, 8.1.2
	specifying data, 1.2.1
	SQL, of OLAP views, 2.4.4
	steps in retrieving results of, 9.1

	Query class, 1.1.3
	Query objects
	
	associating with a CubeMap, 2.4.1.1
	creating, 4.5.2

	query rewrite, 2.4.1.1

R

	ragged hierarchies, 2.4.2.3.1
	range Source objects
	
	definition, 5.2
	example of creating, 6.2.4

	read Transaction object, 7.1.1
	recursiveJoin method
	
	description, 6.1
	example of, 6.2.5, 6.3.4
	signature of, 5.1

	regular input
	
	definition, 5.4.3.3

	relating Source objects
	
	with inputs, 5.4.3

	relational objects
	
	corresponding to MDM objects, 2.1

	relational schemas
	
	for a data warehouse, 1.1.5
	represented by MdmDatabaseSchema objects, 2.3.2.2
	sample, 1.3

	relations
	
	reversing with the value method, 6.2.6.2, 6.3.3

	removeValue method
	
	example of, 6.2.6.2

	removing
	
	elements in a join operation, 5.4.1.3

	resource package
	
	description, 1.1.2

	reversing relations
	
	example of, 6.2.6.2, 6.3.3

	REWRITE_MV_OPTION, 2.4.1.1
	REWRITE_WITH_ATTRIBUTES_MV_OPTION, 2.4.1.1
	root schema, 2.3.1, 2.3.2.1
	root Transaction
	
	definition, 7.1

	rotating cube edges, example of, 6.3.2

S

	sample analytic workspace, 1.3
	sample schema
	
	used by examples, 1.3

	schemas
	
	getting MdmDatabaseSchema for, 4.2
	metadata objects representing, 2.3.2
	represented by MdmDatabaseSchema objects, 2.3.2.2
	sample, 1.3
	star, 1.1.5

	selecting
	
	by position, 6.3.7
	by time series, 6.3.6
	by value, 6.2.2, 6.2.6.1, 6.3.1, 6.3.2, 6.3.5
	elements to include in a join operation, 5.4.1.3

	selectValue method
	
	example of, 6.2.2, 6.3.1, 6.3.5

	selectValues method
	
	example of, 5.4.4.5, 6.2.6.1, 6.3.2

	session package
	
	description, 1.1.2

	sessions
	
	creating a UserSession object, 3.1.2.2
	sharing connection, 1.1.1

	setAllowAutoDataTypeChange method, 2.4.1.2, 2.4.3.2.1
	
	example of, 4.4, 4.5.2

	setConsistentSolveSpecification method, 2.4.1.1
	
	example of, 4.5.1

	setCreateAttributeIndex method, 2.4.3.2.3
	setETAttrPrefix method, 2.4.3.2.7
	setExpression method
	
	example of, 4.3.2

	setJoinCondition method, 2.4.1.1
	setKeyExpression method
	
	example of, 4.3.2

	setLanguage method, 2.4.3.2.4
	setMultiLingual method, 2.4.3.2.5
	setName method, 2.2.1.1
	setPopulateLineage method, 2.4.3.2.6
	setQuery method
	
	example of, 4.3.2

	setShortValueDescriptionAttribute method, 2.4.3.1.1
	setTimeSpanAttribute method, 2.4.3.1.1
	setValue method
	
	of a Parameter, example of, 5.5, 6.3.2, 6.3.7
	of an MdmDescription, 2.2.2

	setValueDescriptionAttribute method
	
	example of, 4.4

	sharing connection, 1.1.1
	SID (system identifier), 3.1.2.1
	SingleSelectionTemplate class, 7.1.5, 7.2, 10.3.2, B.1
	skip-level hierarchies, 2.4.2.3.1
	slower varying Cursor components, 8.2.1, 8.5.2
	sort order
	
	determined by comparisonRule parameter, 5.4.1.3

	sortAscending method
	
	example of, 6.3.5

	sorting hierarchically
	
	example of, 6.3.4

	Source class
	
	basic methods, 6.1
	subclasses of, 5.2

	Source objects
	
	active in a Transaction object, 8.1.3
	base of a join operation, 5.4.1
	data type
	
	definition, 5.3.2
	getting, 5.3.2

	dimensioned, 5.4.3.1
	elements of, 5.3.1
	getting a modifiable Source from a DynamicDefinition, 10.2.5
	getting ID of, 5.3.4
	inputs of
	
	a derived, 5.4.3.2
	a primary, 5.4.3.1
	definition, 5.4.3
	matching with a Source, 5.4.4
	obtaining, 5.4.3
	types, 5.4.3.3

	kinds of, 5.2
	methods of getting, 5.2
	modifiable, 10.1
	outputs of
	
	definition, 5.4.2
	obtaining, 5.4.2

	parameterized, 5.5
	representing queries, 1.2.1, 5.1
	SourceDefinition for, 5.3.4
	subtype
	
	definition, 5.3.3
	obtaining, 5.3.3

	type
	
	definition, 5.3.3
	obtaining, 5.3.3

	source package
	
	description, 1.1.2

	SourceDefinition class, 5.3.4, 10.1.1
	SourceGenerator class, 10.2.4
	
	example of implementation, 10.3.1

	span of a value in a Cursor
	
	definition, 8.5.3, 9.4

	SpecifyAWValues.java
	
	example program, 1.3

	SQL
	
	getting generated, 1.4, 8.1
	queries of OLAP objects, 2.3.1, 2.3.2.2
	queries of OLAP views, 2.4.4

	SQL data types
	
	allowing automatic changing of, 2.4.1.2, 2.4.3.2.1
	specifying for an MdmBaseAttribute, 2.4.3.2.1
	specifying for an MdmBaseMeasure, 2.4.1.2

	SQLCursorManager class, 1.4, 8.4
	star schema, 1.1.5
	StringParameter objects
	
	example of, 5.5, 6.3.2

	subtype of a Source object
	
	definition, 5.3.3
	matching an input, 5.4.4.4
	obtaining, 5.3.3

	syntax package
	
	description, 1.1.2, 1.1.2

T

	table view
	
	navigating Cursor for, example, 9.2

	target dimension
	
	of an attribute, 2.4.3.1.4

	Template class, 10.2.2
	
	designing, 10.3
	example of implementation, 10.3.1

	Template objects
	
	classes used to create, 10.2
	for creating modifiable Source objects, 10.1
	relationship of classes producing a dynamic Source, 10.2.1
	Transaction objects used in, 7.1.3

	templates
	
	bind variables in XML, 2.3.1.2.3
	exporting XML, 2.3.1.2.1, 4.7
	importing XML, 2.3.1.2.2, 4.7

	time series
	
	selecting based on, 6.3.6

	time span
	
	attribute, 2.4.3.1.1
	of a time dimension, 2.4.2.1

	times method
	
	example of, 6.3.5

	TopBottomTemplate class, 7.1.5, 7.2, 10.3.1
	top-level metadata objects
	
	creating, 2.3.2.2
	defined, 2.3.1
	getting, 2.3.2.2
	listed, 2.3.2.2

	Transaction objects
	
	child read and write, 7.1.1
	committing, 4.6, 7.1.2
	creating a Cursor in the current, 8.1.3
	current, 7.1
	example of using child, 7.2
	getting the current, 7.1.6
	preparing, 7.1.2
	read, 7.1.1
	rolling back, 7.1.5
	root, 7.1
	setting the current, 7.1.6
	using in Template classes, 7.1.3
	write, 7.1.1

	transaction package
	
	description, 1.1.2

	TransactionProvider
	
	provided by DataProvider, 7.2

	tuple
	
	definition, 2.4.1.2
	in a Cursor, example, 9.1.1
	specifying a measure value, 8.5.2

	type of an Source object
	
	definition, 5.3.3
	obtaining, 5.3.3

U

	unique dimension member values, 1.2.2
	unique identifiers
	
	of a Source, 5.3.4
	of dimension members, 1.2.2
	of metadata objects, 2.2.1.2

	unique key attributes, 2.4.3.2.7
	UserSession objects
	
	creating, 3.1.2.2
	sharing connection, 1.1.1

V

	Value data type, 5.2
	value method, 5.4.3.2
	
	description, 6.1
	example of, 5.4.4.3, 5.4.4.4, 6.2.4, 6.2.6, 6.2.6.2, 6.3.3

	value separation string, 1.2.2
	value-based hierarchy, 2.4.2.3.2
	ValueCursor objects
	
	getting from a parent CompoundCursor, example, 9.1.1
	getting values from, example, 9.1.1, 9.1.1
	position, 8.5.1

	values
	
	of a Cursor, 8.2.1, 8.5.1
	of the elements of a Source, 5.3.1

	views
	
	materialized, 2.4.3.2.7
	OLAP, 2.4.4

	virtual Cursor
	
	definition, 8.6

	visible parameter
	
	of a join method, 5.4.1.4

	void Source objects
	
	definition, 5.2

W

	write Transaction object, 7.1.1

X

	XML templates
	
	bind variables in, 2.3.1.2.3
	controlling attribute export, 2.3.1.2.1
	exporting, 2.3.1.2.1, 4.7
	importing, 2.3.1.2.2, 4.7

	XMLParserCallback interface, 2.3.1.2
	xmlparserv2.jar file, A.3
	XMLWriterCallback interface, 2.3.1.2.1

Oracle Legal Notices
Copyright Notice
Copyright ?? 1994-2015, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]
OEBPS/img/mdmobjds.gif
MeinOkject

‘gelDescriptiony) - Siring
getShortDescriptiont) - String
setShotDescripton(Sirng cescription) - void
setDescriptin(String descripton) : void

OEBPS/img/mdmschas.gif
MomhetadataProvider

1 1

getRoctSchema

MamRoctSchema

MoimOrganizationalschema

o

0.1 acdOrganizationaiSchema

. 1

getDatabaseSchema
4_+| getDatabaseschemas

findOrCreateOrganizationaiSchema|

MamDatabaseSchema

OEBPS/img/xtabvudp.gif
Product

Month [ENVYABM | ENVYEXE | ENVYSTD
200101 | 304222 | 322328 | 242607
200104 | 302612 | 310785 | 241242
200107 | 289218 | 318691 | 280857
200110 | 289218 | 310853 | 2337.30

OEBPS/img/dimmodel.gif
MaimCube MoimPrimaryDimension
T T T
0.1 0.r [0.
Mamhteasure MamDinensiorLevel | | Mamberarchy | | Momatirioute

OEBPS/dcommon/oracle-logo.jpg
ORACLE

OLAP Java API
Developer's Guide, 12c
Release 1 (12.1)

OEBPS/dcommon/oracle-logo.jpg
ORACLE

OLAP Java API
Developer's Guide, 12c
Release 1 (12.1)

OEBPS/img/mdmdsctp.gif
MeinOkject

aciDescrplion(MdmDescrition des) : void
findOrCresteDescriotion(WdmDescriptionType type, Sting language) : MdmDeserigtion
getDescription(MdmDescriptionType type) - Sring
getDescription(MdmDescriptionType type, Siring langusge) : String

getDescriptonsO): List

removeDescription(MdmDescrigton desc) void

SetDescriplion(MdnDescrilionType type, Sring value): void
setDescription(MdmDescriptionType type, Sting language, Siring value) : void

T

o
WamDescriction WamDescriptionType

getDescribedObject() - MemObject WamDescriptionTypeqavalang String type) : MemDescrigtionType.

et onguinge0) - String MaimDescriptionTypegava ang String ype,

Getiame(” Strng MoimDescriptinType defeutType)

getType() - String] WaimDescriptionType

elValug(): String

LoV vae) v B ———

getDescriptiveTypeQ: ManDescriptionType

getDescriptivTypeDefaul) - MdmDescripionType
getlongDescripfiorDeserilionType() : MemDescriptionType
getLonghlameDescriptonType(): MnDescrigtionType.
getLongPLrablameDescriptionType() : MdnDescrigtionType
getNameDescriptionType() : MdmDescripionT ype
getPluraNameDescriptionType() : MdmDescrigionType
getShortDescriptionDescrptionType) : MemDescripionType
getShorthameDescrigionType() MdnDescrigionType
getShortPLralNameDescrintionType() : MdnDescrigtionType.

OEBPS/img/qrycrstr.gif
quenyCursor
CompoundCursor|

Base

Output 1

Outputz

Valugusor

ValueCursor for
timesel

ValueCursor for
prodsel

ValueCursor for
auerySource

OEBPS/img/qrycrspo.gif
Positions|
1

2
3
n

Positions|

queryCursor
CompoundCursor

|

Output 1
Output 1
Output 1

Output 1 = 2, Output 2= 1
2, Output 2=2,
2, Output 2=3;
3, Output 2

Output 1
Output 1
Output 1
Output 1

Output 1= 3, Output 2= 3,
4, Output 2

4,0utput2=2,
4, Output 2=3;

Output 1
Output 1
Output 1

1, Output 2
1, Output 2=2,

 Output 2

| Output 2

Teesseisee e

c:
c:
c:
c=
c:
c:
c:
c:
c=
c:
c:
c=

¥

20010
200104
2001.07
200110

Positions
1
2
3

Output 1

ValueCursor for

timegel

ENVY ABM
ENVY EXE
ENVY STD

Output 2
ValueCursor for
prodsel

Positions|
1 on

Base ValueCursor
with specified values
from unitPrice

OEBPS/dcommon/oracle.gif

OEBPS/img/cubeasso.gif
ConsistentSolveCommand
T

ConsistertSoiveSpecification

findOrCreate AWCubeOrganizatio

setConsistentSalveSpecifiation

EE——

AWCubeOrganization

sckiDimension
MamDinensionalty Moimcube

findOrCreateCubetten

or

1

1 0.7

Cubelian

MamDinensian 1

findOrCresteBaseMtesure
B

firdOrCresteDerivectteasure
e

WomBaseteasure | [t

Derivedzasure,

OEBPS/img/ragskip.gif
Regular
Level Hierarchy ~ Ragged Hierarchy Skip-level Hierarchies

oYY

OEBPS/img/crsvlvus.gif
1000s —
tableView : View araphview - View
tableCursar : Cursor graphCursor - Cursor
GueryCh Cursortanager
auerySource - Source.

OEBPS/img/mtdtpkgs.gif
oracle.olapi metadata

deployment

mapping

mdm

