
[image: Oracle Corporation]




Oracle?? OLAP

Customizing Analytic Workspace Manager

12c Release 1 (12.1)

E17709-05

June 2014




Oracle OLAP Customizing Analytic Workspace Manager, 12c Release 1 (12.1)

E17709-05

Copyright ?? 2006, 2014,??Oracle and/or its affiliates. All rights reserved.

Primary Author: David McDermid

Contributor: The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an inspiration to all who worked on this release.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.



Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions


1 Customizing With XML Documents

	Describing SQL Reports
	Creating an XML Document for SQL Reports
	Example of a Simple Report
	Creating Report Folders
	Using Bind Variables to Restrict the Report Contents
	Creating Reports in Object Folders
	Reference: Elements for SQL Reports
	<AWMTree>
	<AWMNode>
	<ShowIfQueryTrue>






	Describing Calculation Templates
	Creating an XML Document for Calculations
	Example of a Simple Calculation Template
	Adding an Option to a Calculation
	Creating More Complex Calculation Templates
	Reference: Elements for Calculations
	<AWMCalcs>
	<Calc>
	<CalcOptional>
	<CalcOptionalDefinitions>
	<Category>
	<Item>
	<Param>
	<Params>








2 Introducing Analytic Workspace Manager Plug-ins

	Describing Analytic Workspace Manager Plug-ins
	Enabling Analytic Workspace Manager Plug-ins
	How Analytic Workspace Manager Calls a Plug-in
	Calling an AWMPlugin
	Calling a ViewerPlugin or EditorPlugin






	Describing the AWMPlugin Interface
	Values for the type and obj Parameters
	Elements in the params Map for an AWMPlugin
	Params Map Elements for Non-custom Objects
	Params Map Elements for Custom Objects



	Example params Map Elements for an AWMPlugin



	Describing the ViewerPlugin and EditorPlugin Interfaces
	Describing the ViewerPlugin Interface
	Describing the EditorPlugin Interface
	Elements in the params Map for a ViewerPlugin or EditorPlugin
	Example params Map Elements for a ViewerPlugin and an EditorPlugin
	Example params Map Elements for a ViewerPlugin
	Example params Map Elements for an EditorPlugin






	Steps in Creating a Plug-in
	Describing the Available Plug-ins
	Creating an XML Document for Descriptions of Plug-ins
	Reference: Elements for Plug-in Descriptions
	<AWMPlugins>
	<Plugin>
	<Description>








3 Examples of Analytic Workspace Manager Plug-ins

	Availability of Example Classes and XML Documents
	Examples of AWMPlugin
	ViewXMLPlugin Example
	DeleteDimPlugin Example



	Examples of ViewerPlugin and EditorPlugin
	LevelViewerPlugin Example
	MeasureViewerPlugin Example
	CubeViewerPlugin Example
	DimEditorPlugin Example



	Example of Plug-in Descriptions


Index



List of Examples

	1-1 Creating the My User Views Report
	1-2 Creating the My SQL Reports Folder
	1-3 Passing the Name of a View to a SELECT Statement
	1-4 Including an Icon in a Report
	1-5 Basic XML Structure for Reports
	1-6 Creating the Discount and Average Calculation Templates
	1-7 Adding an Option to One Calculation
	1-8 Adding an Option to Multiple Calculations
	1-9 Sample AWMCalcs Document
	1-10 Basic XML Structure for Calculations
	1-11 XML Structure for Calculations With Options
	1-12 XML Structure for Calculations With Choice Lists
	2-1 XML Structure for Descriptions of Plug-ins
	3-1 The ViewXMLPlugin Class
	3-2 The DeleteDimPlugin Class
	3-3 Creating a dimension.xml Document
	3-4 The LevelViewerPlugin Class
	3-5 Creating a cube.xml Document
	3-6 The MeasureViewerPlugin Class
	3-7 Creating an aw.xml Document
	3-8 The CubeViewerPlugin Class
	3-9 The DimEditorPlugin Class
	3-10 Creating an awmplugins.xml Document




List of Figures

	1-1 Displaying a Report
	1-2 Organizing Reports in Folders
	1-3 Modifying the Content of a Report
	1-4 Reports in the GLOBAL Schema Folder
	1-5 Listing the New Calculations
	1-6 Displaying a New Template
	1-7 Providing an Option to a Calculation
	1-8 Listing More New Calculations
	1-9 Choice Lists In a Calculation Template
	2-1 Configuration Item on the Tools Menu
	2-2 Configuration Dialog Box with Enable Plugins Selected
	2-3 Right-click Menu of the Navigation Tree for a Calculated Measure
	2-4 Sequence of Calls to an AWMPlugin
	2-5 Sequence of Calls to a ViewerPlugin
	2-6 Sequence of Calls to an EditorPlugin
	3-1 Dialog Box Displayed by ViewXMLPlugin
	3-2 Right-click Menu Displayed by DeleteDimPlugin
	3-3 Dialog Box Displayed by DeleteDimPlugin
	3-4 Results of the MyLevels <AWMNode> in dimension.xml
	3-5 Results of LevelViewerPlugin
	3-6 Results of the MyMeasures <AWMNode> in cube.xml
	3-7 Results of MeasureViewerPlugin
	3-8 Results of the MyCubes <AWMNode> in aw.xml
	3-9 Results of the CubeViewerPlugin
	3-10 Results of the MyDims <AWMNode> in aw.xml
	3-11 Results of DimEditorPlugin
	3-12 Result of MyLevels <AWMNode> Under MyDims in aw.xml
	3-13 Results of the Nested <AWMNode> in the MyLevels <AWMNode> in aw.xml
	3-14 Plugins Tab in the About Dialog Box




List of Tables

	1-1 Parameters for the ui Attribute
	2-1 Type Values and Objects for Navigation Tree Objects
	2-2 Keys and Values of the params Map for a Non-custom Object
	2-3 Keys and Values of the params Map for a Custom Object
	2-4 Keys and Values of the BIND_MAP Map
	2-5 Keys and Values of the params Map for DeleteDimPlugin
	2-6 Keys and Values of the BIND_MAP Map for DeleteDimPlugin
	2-7 Keys and Values of the params Map for a ViewerPlugin or EditorPlugin
	2-8 Keys and Values of the params Map for MeasureViewerPlugin
	2-9 Keys and Values of the params Map for DimEditorPlugin





Preface

You can add custom objects and menus to the Oracle Analytic Workspace Manager user interface. You can customize Analytic Workspace Manager by doing the following:

	
Adding custom reports and calculation templates to the navigation tree.


	
Adding selections to the menu that appears when the user right-clicks a navigation tree object.


	
Providing graphical user interface elements for viewing or editing relational database objects or OLAP objects, or both.




Chapter 1, "Customizing With XML Documents" describes how you can add reports and calculation templates to the navigation tree by using XML documents. It also describes how you can specify an Analytic Workspace Manager Java plug-in within an XML document.

Chapter 2, "Introducing Analytic Workspace Manager Plug-ins" describes the Java plug-in interfaces that Analytic Workspace Manager supports and demonstrates how to develop a plug-in. With a plug-in you can add items to the right-click menu of an Analytic Workspace Manager navigation tree object. You can also provide a viewer or an editor plug-in that displays in the Analytic Workspace Manager property inspector.

This document describes the Analytic Workspace Manager XML and Java plug-in interfaces and provides simple examples of implementations of them.

This preface contains the following topics.

	
Audience


	
Documentation Accessibility


	
Related Documents


	
Conventions





Audience

This document is intended for XML or Java developers who want to use XML documents or Java plug-ins to extend the functionality of Analytic Workspace Manager in Oracle Database 12c Release 1 (12.1) with the OLAP option.





Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.





Related Documents

For more information on Oracle OLAP, on using Analytic Workspace Manager, and on the Oracle OLAP Java API, see the following documents.

	
Oracle OLAP User's Guide


	
Oracle OLAP Java API Reference


	
Oracle OLAP Java API Developer's Guide








Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.












1 Customizing With XML Documents

Analytic Workspace Manager provides numerous SQL reports so that you can query the Oracle Database data dictionary and system tables without having to open another SQL interface. It also provides an extensive list of templates for generating calculated measures. You can supplement both of these features by adding custom SQL reports and calculation templates.

To define these customizations, you create XML documents. For an introduction to XML, refer to a source such as the W3Schools XML tutorial at http://www.w3schools.com. Use an XML-enabled editor or browser to validate the syntax of your XML documents.

This chapter contains the following topics:

	
Describing SQL Reports


	
Describing Calculation Templates






Describing SQL Reports

You can add reports to the Analytic Workspace Manager navigation tree that appear along with the other built-in reports. You provide a name for the report and a SQL SELECT command. You can optionally modify the report contents at run-time and organize them into folders.


Creating an XML Document for SQL Reports

	
Develop a SQL query that returns the information to make available in Analytic Workspace Manager.


	
Create a text file named awmtree.xml in the directory with the Analytic Workspace Manager executable, typically Oracle_home/olap/awm.


	
Begin the file with an XML declaration like this one:


<?xml version="1.0" encoding="utf-8"?>


Specify the appropriate encoding for your site.


	
Enter the XML for the template, as described in "Reference: Elements for SQL Reports".


	
For the sql attribute of the <AWMNode> element, enter the SELECT command that you developed in Step 1. You can replace values in a WHERE clause with bind variables from parent <AWMNode> elements, as described in "Using Bind Variables to Restrict the Report Contents".


	
Refresh the navigation tree. The new reports appear at the end of the tree.

If the new reports do not appear, then look for syntax errors in the XML.








Example of a Simple Report

Figure 1-1 shows a new report named My User Views in the Analytic Workspace Manager navigation tree. The report displays the results of this query: SELECT view_name FROM user_views.


Figure 1-1 Displaying a Report

[image: Description of Figure 1-1 follows]






The XML document in Example 1-1 defines the My User Views report. The document contains two elements: <AWMTree> and <AWMNode>. <AWMTree> is the root element and identifies this document as containing XML that defines a report for Analytic Workspace Manager. The document can have one or more <AWMNode> elements. In this example, a single <AWMNode> element defines the My User Views report.

Among the attributes that the <AWMNode> element can have are name and sql. Example 1-1 uses name to identify the report as My User Views, and sql to specify a SELECT statement that executes when you select the report in the tree.


Example 1-1 Creating the My User Views Report


<?xml version="1.0" encoding="utf-8" ?>
<AWMTree>
   <AWMNode name="My User Views" sql="SELECT view_name FROM user_views"/>
</AWMTree>







Creating Report Folders

Folders provide an easy way to organize your reports. A folder is simply an <AWMNode> element without a SQL statement, and it is the parent of other <AWMNode> elements. You can nest <AWMNode> elements as deeply as you want.

Figure 1-2 shows a folder named My SQL Reports. It contains two reports, My User Tables and My User Views.


Figure 1-2 Organizing Reports in Folders

[image: Description of Figure 1-2 follows]






The XML document in Example 1-2 shows that the <AWMNode> elements defining the two reports are the children of the <AWMNode> element that defines the My SQL Reports folder.


Example 1-2 Creating the My SQL Reports Folder


<?xml version="1.0" encoding="utf-8" ?>
<AWMTree>
   <AWMNode name="My SQL Reports">
      <AWMNode name="My User Tables" sql="SELECT table_name FROM user_tables"/>
      <AWMNode name="My User Views" sql="SELECT view_name FROM user_views"/>
   </AWMNode>
</AWMTree>








Using Bind Variables to Restrict the Report Contents

Bind variables restrict the contents of a report based on your run-time selection from a list of values in the navigation tree. Figure 1-3 shows the list of views returned by the My User Views report, which is now displayed in the navigation tree instead of in the property inspector. The property inspector displays a report for the particular view selected in the tree.

The most deeply nested <AWMNode> element (the "leaf" element) is displayed in a grid in the property inspector and can return multiple columns. The parent elements are displayed in the navigation tree and either return no columns (that is, a folder) or one column, as shown here.


Figure 1-3 Modifying the Content of a Report

[image: Description of Figure 1-3 follows]






The type parameter of an <AWMNode> element stores the run-time selection. By referencing the name of the type parameter in a nested <AWMNode> element, you pass the value into that SELECT statement. The XML document in Example 1-2 shows an <AWMNode> element nested in the My User Views <AWMNode>. The nested <AWMNode> uses the value of the type element from the parent <AWMNode> element as a bind variable. You reference a bind variable by putting it in braces {}, as in {view} in the example.


Example 1-3 Passing the Name of a View to a SELECT Statement


<?xml version="1.0" encoding="utf-8" ?>
<AWMTree>
   <AWMNode name="My SQL Reports">
      <AWMNode 
         name="My User Tables" 
         sql="select table_name from user_tables"/>
      <AWMNode 
         name="My User Views" 
         type="view" 
         sql="select view_name from user_views">
         <AWMNode sql="SELECT * FROM user_tab_columns WHERE table_name = {view}"/>
      </AWMNode>
   </AWMNode>  
</AWMTree>








Creating Reports in Object Folders

The awmtree.xml document defines reports that appear in the navigation tree under a database connection, after the Reports folder. You can also define reports that appear in the folders for all schemas, analytic workspaces, cubes, or dimensions. The reports must be in XML documents that have the following names:

	
schema.xml, for reports that appear in all schema folders.


	
aw.xml, for reports that appear in all analytic workspace folders.


	
dimension.xml, for reports that appear in all dimension folders.


	
cube.xml, for reports that appear in all cube folders.




These files must be in a JAR file in the plug-in directory.

To create reports in object folders:??

	
Open Analytic Workspace Manager and select Configuration from the Tools menu, as shown in Figure 2-1. The Configuration dialog box appears.


	
Select Enable plugins and enter the path to a plug-in directory, if these parameters are not set already, as shown in Figure 2-2.


	
Click OK, and close Analytic Workspace Manager.


	
Create one or more XML document files.


	
In the plug-in directory, create a JAR file containing the XML files and any icons referenced by them. You can create one JAR file for all of them or create individual JAR files.


	
Open Analytic Workspace Manager and expand the navigation tree to see the reports.




Figure 1-4 shows a report folder named My Tables described in a schema.xml document. It uses a custom icon (red button) in the navigation tree. The My Tables folder appears in the GLOBAL schema folder.


Figure 1-4 Reports in the GLOBAL Schema Folder

[image: Description of Figure 1-4 follows]






The schema.xml document in Example 1-4 has an <AWMNode> element named My Tables. That element has an icon attribute that specifies a graphics file. In the JAR file that contains the schema.xml file and the button.jpg file, both files are in a directory named plugin112.




	
Note:

The references to icon files or Java class files in an XML document must reflect the directory structure of the JAR file containing them. The examples in this document of XML documents and Java plug-ins were created in a JDeveloper project named plugin112. The project deploys the XML and Java class files in a JAR file. In the JAR file, the XML files and class files are in a directory named plugin112. In Example 1-4, the icon attribute specification includes the directory: icon="plugin112/button.jpg". In the examples of XML documents in Chapter 3, the viewClass attribute specifications include the package name, as in viewClass="plugin112.DimEditorPlugin" in Example 3-7.








Example 1-4 Including an Icon in a Report


<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
  <AWMNode name="My Tables" 
           icon="plugin112/button.jpg"
           type="table" 
           sql="select table_name from all_tables where owner = {owner}">
    <AWMNode sql="select column_name, data_type from all_tab_columns where owner = {owner} and table_name = {table}"/>
  </AWMNode>
</AWMTree>








Reference: Elements for SQL Reports

An XML document for SQL reports has the basic format shown in Example 1-5.


Example 1-5 Basic XML Structure for Reports


<AWMTree>
   <AWMNode>
      <AWMNode>
         <ShowIfQueryTrue>
      <AWMNode>
            .
            .
            .






<AWMTree>

The root element that identifies this document as containing custom reports for Analytic Workspace Manager. It contains one or more <AWMNode> elements.


Contains

<AWMNode>


Attributes

None






<AWMNode>

Defines a report folder or SQL report. It contains one or more <AWMNode> elements.


Contains

<AWMNode>, <ShowIfQueryTrue>


Attributes

<AWMNode> has the following attributes:

	
name: The name of the folder or report. For a folder, this attribute is the only one required.


	
type: The name of a bind variable that stores the selected value of the report. Use this bind variable to pass a user selection to a second, nested report.


	
sql: A SQL SELECT statement, which can contain a bind variable in a WHERE clause. The bind variable is defined by the type attribute of a parent <AWMNode> attribute. The query results appear in the tree for a parent <AWMNode> element; for leaf elements, the results appear in the property inspector.


	
viewClass: A Java class that implements the ViewerPlugin or EditorPlugin interface. The plug-in displays in the property inspector. For information on these Java plug-in interfaces, see Chapter 2, "Introducing Analytic Workspace Manager Plug-ins". The viewClass and viewSQL attributes are mutually exclusive. Use only one of them for any single <AWMNode>.


	
viewSql: A SQL SELECT statement. The query results appear in the property inspector. Use this attribute to specify a SQL statement for a parent <AWMNode>. The viewSQL and viewClass attributes are mutually exclusive. Use only one or the other for any single <AWMNode>.


	
icon: An image to use in the navigation tree. The image must be in a JAR file in the plug-in directory and should be about 20 x 20 pixels.









<ShowIfQueryTrue>

Controls the display of the parent report.


Contains

None


Attributes

<ShowIfQueryTrue> has the following attribute:

	
sql: A SQL SELECT statement that creates the condition for displaying the parent report. If the query returns one or more rows, then the report is displayed in the navigation tree. If no rows are returned, then the report is hidden.













Describing Calculation Templates

You can define a calculation template that appears in the Create a Calculated Measure dialog box like any other calculation. You provide a name for the calculation, the text of the template, and a calculation using the OLAP expression syntax. For information on the expression syntax, see Oracle OLAP Expression Syntax Reference.


Creating an XML Document for Calculations

	
Create a custom measure in Analytic Workspace Manager that performs the type of calculation that you want in a template. Use this custom measure to validate the syntax of the expression for the template.


	
Create a text file named awmcalcs.xml in the directory with the Analytic Workspace Manager executable, typically ORACLE_HOME/olap/awm.


	
Begin the file with an XML declaration like this one:


<?xml version="1.0" encoding="utf-8"?>


Specify the appropriate encoding for your site.


	
Enter the XML for the template, as described in "Reference: Elements for Calculations".


	
For the expression attribute of the <Calc> element, cut-and-paste the calculation from the custom measure that you created earlier. Replace the names of the measure, dimension, and so forth with the variables from the ui parameter.


	
Open Analytic Workspace Manager. The new categories and templates appear at the end of the Calculation Type list in the Create Calculated Measure dialog box.

If the new entries do not appear, then look for syntax errors in the XML. To see changes to the XML document, just reopen the Create Calculated Measure dialog box.








Example of a Simple Calculation Template

Figure 1-5 shows the Calculation Type list in the Create Calculated Measure dialog box. The list contains a new folder named My New Calcs with two additional calculations: Discount and Average.


Figure 1-5 Listing the New Calculations

[image: Description of Figure 1-5 follows]






Figure 1-6 shows the template portion of the General tab that appears when a user selects Discount from the tree.


Figure 1-6 Displaying a New Template

[image: Description of Figure 1-6 follows]






The XML document in Example 1-6 defines the My New Calcs folder and the Discount and the Average calculations. The document contains three elements: <AWMCalcs>, <Category>, and <Calc>. <AWMCalcs> is the root element. It can have one or more <Category> elements. In this example, the <Category> element defines a folder named My New Calcs.

A <Category> element can have one or more <Calc> elements. This document has two <Calc> elements named Discount and Average.

A <Calc> element has four attributes: name, description, ui, and expression. Each attribute takes a quoted string as a value. The ui element consists of literal text and hypertext links. You create the links by entering one of several available parameters.

Example 1-6 uses the {measure} and {number} parameters. You use the same parameters in the expression attribute as bind variables, which pass the user choices to the calculation. Notice that the Average calculation uses two {measure} parameters. The expression attribute refers to them by their order in the ui attribute: {measure:1} and {measure:2}.

Refer to "Reference: Elements for Calculations" for full descriptions of these elements.


Example 1-6 Creating the Discount and Average Calculation Templates


<?xml version ="1.0" encoding="UTF-8" ?>
<AWMCalcs>
   <Category name="NEW_CALCS" description="My New Calcs">
      <Calc 
         name="Discount" 
         description="Discount"
         ui="Discount {measure} by {number} percent"
         expression="{measure}*(1 - ({number}/100))"/>  
      <Calc 
         name="Average" 
         description="Average"
         ui="Average of {measure} and {measure}"
         expression="({measure:1}+{measure:2})/2"/> 
   </Category>
</AWMCalcs>







Adding an Option to a Calculation

You can add an option that changes the basic calculation. The option appears as a check box in the Create Calculated Measure dialog box. Users select the option to create the modified calculation.

Two elements support these options: <CalcOptional> and <CalcOptionalDefinitions>. You can define a <CalcOptional> element locally or globally. Within a <Calc> element, <CalcOptional> applies only to that particular calculation. Within a <CalcOptionalDefinitions> element, <CalcOptional> applies to all calculations that reference it by name.

Figure 1-7 shows the sample calculation with an option of truncating the values of the measure to whole numbers. The user has changed the percentage value to 6.


Figure 1-7 Providing an Option to a Calculation

[image: Description of Figure 1-7 follows]






Example 1-7 shows the Truncate option defined locally in a <Calc> element. The option applies only to the Discount calculation.


Example 1-7 Adding an Option to One Calculation


<Calc 
   name="Discount" 
   description="Discount"
   ui="Discount {measure} by {number} percent"
   expression="{measure}*(1 - ({number}/100))">
   <CalcOptional 
      name="truncate"
      type="boolean"
      text="Truncate the decimal places"
      expression="TRUNC($expression$)"/>
</Calc>




Example 1-8 shows the Truncate option defined globally in the <CalcOptionalDefinitions> element. The option is used by the Discount and the Average calculations, and it is available to any other calculations that might be defined.


Example 1-8 Adding an Option to Multiple Calculations


<AWMCalcs>
   <CalcOptionalDefinitions>
      <CalcOptional
         name="truncate"
         type="boolean"
         text="Truncate the decimal places"
         expression="TRUNC($expression$)" /> 
   </CalcOptionalDefinitions> 
   <Category name="NEW_CALCS" description="My New Calcs">
      <Calc 
         name="Discount" 
         description="Discount"
         ui="Discount {measure} by {number} percent"
         expression="{measure}*(1 - ({number}/100))">
         <CalcOptional name="truncate"/>
      </Calc>
      <Calc
         name="Average" 
         description="Average"
         ui="Average of {measure} and {measure}"
         expression="({measure:1}+{measure:2})/2">  
         <CalcOptional name="truncate"/>
      </Calc>
   </Category>
</AWMCalcs> 







Creating More Complex Calculation Templates

This example creates five calculations in two folders. The calculations in both folders use the global options defined at the beginning of the XML document. Figure 1-8 shows the calculations as they appear in the Calculation Type list.


Figure 1-8 Listing More New Calculations

[image: Description of Figure 1-8 follows]






The My Period To Date calculation has the most complex syntax, including three lists. Using the <Params> element, you can create the lists quickly. This is the definition of the first list, which is displayed in Figure 1-9:


<Params>
   <Param type="list" name="timePeriods">
      <Item expression="GREGORIAN YEAR" text="Gregorian year"/>
      <Item expression="GREGORIAN QUARTER" text="Gregorian quarter"/>
      <Item expression="GREGORIAN MONTH" text="Gregorian month"/>
      <Item expression="GREGORIAN WEEK" text="Gregorian week"/>
      <Item expression="ANCESTOR AT LEVEL {level}" text="Ancestor at level"/>
   </Param>
</Params>



Figure 1-9 Choice Lists In a Calculation Template

[image: Description of Figure 1-9 follows]






Example 1-9 shows the complete XML document that defines the five calculation templates shown in Figure 1-8.


Example 1-9 Sample AWMCalcs Document


<?xml version ="1.0" encoding="UTF-8" ?>
 
<AWMCalcs>
  <Params>
    <Param type="list" name="timePeriods">
      <Item expression="GREGORIAN YEAR" text="Gregorian year"/>
      <Item expression="GREGORIAN QUARTER" text="Gregorian quarter"/>
      <Item expression="GREGORIAN MONTH" text="Gregorian month"/>
      <Item expression="GREGORIAN WEEK" text="Gregorian week"/>
      <Item expression="ANCESTOR AT LEVEL {level}" text="Ancestor at level"/>
    </Param>
    <Param type="list" name="aggOps">
      <Item expression="SUM" text="sum"/>
      <Item expression="MAX" text="maximum"/>
      <Item expression="MIN" text="minimum"/>
      <Item expression="AVG" text="average"/>
    </Param>
  
  </Params>
  <CalcOptionalDefinitions>
    <CalcOptional 
        name="percentages"
        type="boolean"
        text="Multiply by 100"
        expression="($expression$)*100"/>
    <CalcOptional 
        name="truncate"
        type="boolean"
        text="Truncate the decimal places"
        expression="TRUNC($expression$)" /> 
  </CalcOptionalDefinitions> 
  <Category name="DEMO_CALCS" description="Demo Calcs">
    <Calc
        name="PctDif"
        description="My Percent Difference"
        ui="Percent difference between {measure} and {measure}."
        expression="({measure:1} - {measure:2}) / abs({measure:2})">
      <CalcOptional name="percentages" />
    </Calc>
    <Calc
        name="PriorPeriod"
        description="My Prior Period"
        ui="Prior period for measure {time_measure} in the {time_dimension}
            dimension and {hierarchy} hierarchy {number} period(s) ago."
        expression="LAG({time_measure},{number}) over hierarchy ({hierarchy})" />
    <Calc
        name="Periodtodate"
        description="My Period to Date"
        ui="{timePeriods} to date for {time_measure} in the {time_dimension}
           dimension and {hierarchy} hierarchy. Aggregate over {timePeriods}
           using {aggOps} from the {calcRange} of the period."
        expression="{aggOps}({time_measure}) OVER HIERARCHY ({hierarchy} 
           BETWEEN {calcRange} WITHIN {timePeriods})">
        <Param type="list" name="calcRange">
           <Item expression="UNBOUNDED PRECEDING AND CURRENT MEMBER"
              text="beginning"/>
           <Item expression="CURRENT MEMBER AND UNBOUNDED FOLLOWING"
              text="end"/>
      </Param>
      <CalcOptional name="truncate"/>
    </Calc>
  </Category>
  <Category name="NEW_CALCS" description="My New Calcs">
    <Calc 
        name="Discount" 
        description="Discount"
        ui="Discount {measure} by {number} percent."
        expression="{measure}*(1 - ({number}/100))">
         <CalcOptional name="truncate"/>
    </Calc>
    <Calc 
        name="Average" 
        description="Average"
        ui="Average of {measure} and {measure}"
        expression="({measure:1}+{measure:2})/2">  
      <CalcOptional name="truncate"/>    
    </Calc>
  </Category>
</AWMCalcs> 








Reference: Elements for Calculations

An XML document for calculations has the basic format shown in Example 1-10.


Example 1-10 Basic XML Structure for Calculations


<AWMCalcs>
   <Category>
      <Calc>




Example 1-11 expands on this basic structure to include the definition of options in the calculations.


Example 1-11 XML Structure for Calculations With Options


<AWMCalcs>
   <CalcOptionalDefinitions>
      <CalcOptional>
   <Category>
      <Calc>
         <CalcOptional>




Example 1-12 expands the basic structure to include choice lists in the user interface.


Example 1-12 XML Structure for Calculations With Choice Lists


<AWMCalcs>
   <Params>
      <Param>
         <Item>
   <Category>
      <Calc>
         <Param>
            <Item>




Following are the descriptions of the elements.



<AWMCalcs>

The root element that identifies this document as containing the custom calculation templates for Analytic Workspace Manager. It contains a <Category> element, and can also contain a <CalcOptionalDefinitions> element, a <Params> element, or both.


Contains

<CalcOptionalDefinitions>, <Category>, <Params>


Attributes

None






<Calc>

Describes a calculation template. It can contain a <CalcOptional> element, or one or more <Param> elements, or both.


Contains

<CalcOptional>, <Param>


Attributes

<Calc> has the following attributes:

	
name: A unique name for the calculation, which conforms to the same naming conventions as other OLAP objects.


	
description: A description of the calculation. Analytic Workspace Manager adds the description to the list of calculation templates.


	
ui: The text of the template, which Analytic Workspace Manager displays in the Calculation Type list of the Create Calculated Measure dialog box. Enclose hypertext parameters in braces {}. Table 1-1 describes the valid parameters.


	
expression: The calculation that is executed by the calculated measure. This calculation is defined using the expression syntax and by using as bind variables the hypertext parameters from the ui attribute. Enclose the bind variables in braces {}. If the ui attribute uses the same parameter two or more times, then reference them by the order they appeared, such as {measure:1} and {measure:2}. For a simple example, see Example 1-6.





Table 1-1 Parameters for the ui Attribute

	Parameter	Description
	
ATTRIBUTE

	
Lists the attributes of the selected dimension.


	
DIMENSION

	
Lists all dimensions of the current cube.


	
DIMENSION_MEMBER

	
Lists the members of the selected dimension.


	
HIERARCHY

	
Lists the hierarchies of the selected dimension.


	
HIERARCHY_LEVEL

	
Lists the levels of the selected hierarchy.


	
LEVEL

	
Lists the levels of the selected dimension.


	
LIST

	
Displays a list of values specified in this format:

LIST:expression=value;[expression=value;...]

Alternatively, use the <Params> element.


	
MEASURE

	
Lists all measures in the analytic workspace with at least one dimension in common with the current cube.


	
NUMBER

	
Displays a text field that accepts numeric input.


	
TEXT_INPUT

	
Displays a text field that accepts any text input.


	
TIME_DIMENSION

	
Lists the time dimensions of the current cube.


	
TIME_MEASURE

	
Lists all measures for cubes that have a time dimension.


	
VALUE

	
Displays the current selection from a LIST parameter.


	
param

	
A parameter defined in a <Param> element. Specifically, the value of the text attribute of an <Item> element.












<CalcOptional>

Defines a check box that can be used by one or more calculations to modify the basic expression. For example, a calculation that generates a fraction might offer a Multiply By 100 option to return the results as a percentage.

Include a <CalcOptional> element in a <Calc> element where you want a check box to appear. You can fully define the option within the <Calc> element, or you can define the option within a <CalcOptionalDefinitions> element and reference it by name with a second <CalcOptional> element in the <Calc> element.

A <Calc> element can contain a <CalcOptional> element. A <CalcOptionalDefinitions> element can have one or more <CalcOptional> elements.


Contains

None


Attributes

<CalcOptional> has the following attributes:

	
name: A unique name for the option, which conforms to the same naming conventions as other OLAP objects.


	
type: The data type of the option, which is always boolean.


	
text: A description of the option. This text labels the check box.


	
expression: The calculation that is executed when the option is selected. Use the expression syntax and ($expression$) for the basic calculation defined by the current <Calc> element.









<CalcOptionalDefinitions>

Contains one or more <CalcOptional> elements so they can be referenced by multiple calculations. This element must appear directly after <AWMCalcs>.


Contains

<CalcOptional>


Attributes

None






<Category>

Defines a heading in the list of calculations in Analytic Workspace Manager. It contains one or more <Calc> elements.


Contains

<Calc>


Attributes

<Category> has the following attributes:

	
name: A unique name for the category, which conforms to the same naming conventions as other OLAP objects.


	
description: A description of the category. Analytic Workspace Manager adds this description to the list of calculation templates.









<Item>

Describes an entry in a list of values or numbers.


Contains

None


Attributes

<Item> has the following attributes:

	
text: Value entered in the <Calc> ui attribute and displayed to users.


	
expression: Value inserted in the <Calc> expression attribute when a user selects the item.









<Param>

Describes a list of values or a number field referenced in a <Calc> ui attribute. An expression that corresponds to the choice made by the user is entered in the calculation instead of the displayed value. This element contains one or more <Item> elements.


Contains

<Item>


Attributes

<Param> has the following attributes:

	
type: Either LIST for a list of values, or NUMBER for a field for entering a number.


	
name: The name of the parameter, which is referenced in the <Calc> ui attribute.


	
default: Provides the default value when a user enters a number that has no corresponding expression in an <Item> element.









<Params>

Contains one or more <Param> elements.


Contains

<Param>


Attributes

None












2 Introducing Analytic Workspace Manager Plug-ins

An Analytic Workspace Manager plug-in enables you to run Java code in the context of Analytic Workspace Manager. With an implementation of a Java plug-in interface that is supported by Oracle Analytic Workspace Manager, Version 12.1, you can extend the functionality of Analytic Workspace Manager in Oracle Database 12c Release 1 (12.1) with the OLAP option.

This chapter has the following topics.

	
Describing Analytic Workspace Manager Plug-ins


	
Describing the AWMPlugin Interface


	
Describing the ViewerPlugin and EditorPlugin Interfaces


	
Steps in Creating a Plug-in


	
Describing the Available Plug-ins






Describing Analytic Workspace Manager Plug-ins

Analytic Workspace Manager has the following Java plug-in interfaces.

	
AWMPlugin, which you can use to add selections to the right-click menu of a navigation tree object.


	
ViewerPlugin, which you can use to display information in the property inspector about the current navigation tree object.


	
EditorPlugin, which extends ViewerPlugin and adds the ability to edit properties of the object.




With an Analytic Workspace Manager plug-in, you can implement programs that perform actions such as the following:

	
Create new types of calculations.


	
Create forecasts.


	
Create custom OLAP metadata objects, such as an enterprise-specific time dimension.


	
Control the display in the property inspector of the information associated with a custom navigation tree object.


	
Edit the properties of an object in the property inspector.




In an Analytic Workspace Manager plug-in, you can use the following Java APIs:

	
Oracle OLAP Java API


	
JDBC API


	
Swing API




You can invoke OLAP DML or SQL procedures by using JDBC classes.



Enabling Analytic Workspace Manager Plug-ins

Analytic Workspace Manager has a configuration option that specifies whether it uses plug-ins. To enable plug-ins, from the Analytic Workspace Manager Tools menu, select Configuration, as shown in Figure 2-1. In the Configuration dialog box, select Enable Plugins and specify the directory that contains your plug-ins, as shown in Figure 2-2. Click OK and then exit and restart Analytic Workspace Manager.


Figure 2-1 Configuration Item on the Tools Menu

[image: Description of Figure 2-1 follows]






Figure 2-2 shows the Configuration dialog box with Enable plugins selected and with plugin as the value for Plugin directory. The value should include the full path to the plug-in directory unless the directory is a subdirectory of the Oracle_home/olap/awm directory, which is the case for the plugin directory shown in the figure.


Figure 2-2 Configuration Dialog Box with Enable Plugins Selected

[image: Description of Figure 2-2 follows]









How Analytic Workspace Manager Calls a Plug-in

If Analytic Workspace Manager has plug-ins enabled, then on startup Analytic Workspace Manager dynamically loads Java code from JAR files located in the plug-ins directory. After loading the contents of the JAR files, Analytic Workspace Manager looks for classes that implement the AWMPlugin, ViewerPlugin, or EditorPlugin interfaces. It also looks for aw.xml, cube.xml, dimension.xml, and schema.xml files to add objects to the navigation tree.




	
Note:

You can include multiple plug-ins and XML documents in a single JAR file.







When Analytic Workspace Manager calls most methods of a plug-in, it passes the method a java.sql.Connection object as the conn parameter. The Connection represents the current connection to the Oracle Database instance.

Analytic Workspace Manager does not pass any user identification or password to the plug-in. It only passes the connection object. An Analytic Workspace Manager plug-in does not allow you to do anything that you cannot do by writing a standalone Java program. For information on the parameters that Analytic Workspace Manager passes to the methods of plug-ins, see "Describing the AWMPlugin Interface" and "Describing the ViewerPlugin and EditorPlugin Interfaces".


Calling an AWMPlugin

When a user right-clicks an object in the Analytic Workspace Manager navigation tree, a menu appears that presents the actions available for the object. The menu also displays options supplied by the AWMPlugin plug-ins that apply to the object. An AWMPlugin uses the isSupported method to indicate whether it applies to an object in the tree. Because Analytic Workspace Manager calls the isSupported method of each plug-in whenever the user right-clicks a navigation tree object, an isSupported method should return quickly.

The menu displays the text returned by the getMenu method of the plug-in. Figure 2-3 shows the menu that Analytic Workspace Manager displays when a user right-clicks a calculated measure in the tree. The menu includes the ViewXMLPlugin example plug-in. For the code of the plug-in example, see Example 3-1.


Figure 2-3 Right-click Menu of the Navigation Tree for a Calculated Measure

[image: Description of Figure 2-3 follows]






If the user selects the plug-in, then Analytic Workspace Manager calls the handle method of the plug-in. The handle method specifies the actions that the plug-in performs. The refreshTree method of the plug-in indicates whether Analytic Workspace Manager refreshes the navigation tree to include any new objects created by the plug-in or to remove objects deleted by the plug-in.





Calling a ViewerPlugin or EditorPlugin

As described in "Creating Reports in Object Folders", with certain XML documents you can add objects to the Schemas, Analytic Workspaces, Dimensions, and Cubes folders in the Analytic Workspace Manager navigation tree. You add objects to the navigation tree by adding <AWMNode> elements to the XML document. If an <AWMNode> specifies a ViewerPlugin or an EditorPlugin, then Analytic Workspace Manager calls the plug-in when the user selects the navigation tree object that corresponds to the <AWMNode>.

With the sql attribute of an <AWMNode> element, you can specify a SQL SELECT statement. Analytic Workspace Manager displays the result of the statement either in the folder in the navigation tree or in the property inspector, or in both places. For more information about creating the XML documents and the SQL statements, see "Creating Reports in Object Folders".

To control the display of the information in the property inspector or to enable the user to edit properties of the selected navigation tree object, you can use a ViewerPlugin or EditorPlugin. You use the viewClass attribute of an <AWMNode> element to specify the plug-in. In the plug-in you can use the Oracle OLAP Java API to retrieve OLAP objects or alter characteristics of them. You can also specify user interface elements for the display in the property inspector.










Describing the AWMPlugin Interface

The following is the oracle.olap.awm.plugin.AWMPlugin interface.


package oracle.olap.awm.plugin

import java.awt.Frame;
import java.sql.Connection;
import java.util.Map;
import oracle.AWXML.AW;

public interface AWMPlugin
{
  boolean isSupported(Connection conn, String type, Object obj, AW aw,
                      Map params);

  String getMenu(Connection conn, String type, Object obj, AW aw, 
                 Map params);

  void handle(Frame parent, Connection conn, String type, Object obj, 
              AW aw, Map params);

  boolean refreshTree(Connection conn, String type, Object obj, AW aw,
                      Map params);
}


When a user right-clicks an object in the navigation tree, Analytic Workspace Manager calls the methods of classes that implement the AWMPlugin interface in the sequence illustrated in Figure 2-4.


Figure 2-4 Sequence of Calls to an AWMPlugin

[image: Description of Figure 2-4 follows]






Analytic Workspace Manager first calls the isSupported method. If that method returns true, then Analytic Workspace Manager calls getMenu and displays on the right-click menu the value that getMenu returns. If a user selects the menu item, then Analytic Workspace Manager calls the handle and refreshTree methods. The input parameters that Analytic Workspace Manager passes to the AWMPlugin methods are the following:

	
conn, which is a java.sql.Connection object that represents the current connection to the Oracle Database instance.


	
type, which is a java.lang.String that is a type designation that Analytic Workspace Manager assigns to the object. For a description of type parameter values, see "Values for the type and obj Parameters".


	
obj, which is a java.lang.Object that Analytic Workspace Manager associates with the object selected in the Analytic Workspace Manager navigation tree. The Object can be a String or an object from the Oracle OLAP Java API. For more information on the obj parameter values, see "Values for the type and obj Parameters".


	
aw, which is null. This parameter exists for compatibility with 10g plug-ins, for which aw was an oracle.AWXML.AW object.


	
params, which is a java.util.Map that contains objects and information that the plug-in can use. For a description of the Map keys and values, see "Elements in the params Map for an AWMPlugin".


	
parent, which is a java.awt.Frame object that Analytic Workspace Manager passes to the handle method. The plug-in can use this object as the parent frame for user interface components.






Values for the type and obj Parameters

For the type parameter of the methods of an AWMPlugin implementation, Analytic Workspace Manager passes to the plug-in a label that identifies the type of the navigation tree object for which the plug-in is invoked. For the obj parameter of the methods, Analytic Workspace Manager passes an Object, which is a java.lang.String or an OLAP metadata object.

A plug-in can use the type value to distinguish between the navigation tree objects that are associated with the same metadata object. For example, for all of the folder objects in a Dimensions folder, such as Levels and Hierarchies, Analytic Workspace Manager passes as the obj parameter the same MdmPrimaryDimension object, but it passes a different type label for each folder object.

Custom objects that you add with an XML document appear in the navigation tree at the level specified by the XML document. For example, a top-level <AWMNode> in a dimension.xml document appears in the Dimensions folder of an analytic workspace. For an AWMPlugin implementation specified by an <AWMNode> element, the type parameter value has the prefix AWMTree_ followed by the value of the name attribute of the parent <AWMNode>. The obj parameter value is the run-time value of the type attribute of the <AWMNode>.

Table 2-1 shows the type parameter values and obj parameter objects that Analytic Workspace Manager passes to the plug-in for the selected navigation tree object. The indentation of objects in the Navigation Tree Object column indicates the hierarchy of the tree. Text in italics indicates a variable object name. The obj parameter objects are String objects or OLAP metadata objects. The AW object is an oracle.olapi.metadata.deployment.AW object. The other metadata objects, such as MdmStandardDimension and MdmCube, are classes in the oracle.olapi.metadata.mdm package. The Reports object and all of the objects under it have the same type.


Table 2-1 Type Values and Objects for Navigation Tree Objects

	Navigation Tree Object	type Parameter Value	obj Parameter Object
	
Databases

	
Databases

	
Databases


	
Database name

	
DATABASE

	
Database identifier


	
Schemas

	
SCHEMA_FOLDER

	
Database identifier


	
Schema name

	
SCHEMA

	
Schema name


	
Analytic Workspaces

	
WORKSPACE_FOLDER

	
Schema name


	
Analytic workspace name

	
WORKSPACE

	
AW


	
Dimensions

	
DIMENSION_FOLDER

	
AW


	
Dimension name

	
DIMENSION

	
MdmStandardDimension or MdmTimeDimension


	
Levels

	
DIMENSION_LEVEL_FOLDER

	
MdmStandardDimension or MdmTimeDimension


	
Level name

	
DIMENSION_LEVEL

	
MdmDimensionLevel


	
Hierarchies

	
DIMENSION_HIERARCHY_FOLDER

	
MdmStandardDimension or MdmTimeDimension


	
Hierarchy name

	
DIMENSION_HIERARCHY

	
MdmLevelHierarchy or MdmValueHierarchy


	
Attributes

	
DIMENSION_ATTRIBUTE_FOLDER

	
MdmStandardDimension or MdmTimeDimension


	
Attribute name

	
DIMENSION_ATTRIBUTE

	
MdmBaseAttribute


	
Mappings

	
DIMENSION_MAP

	
MdmStandardDimension or MdmTimeDimension


	
Views

	
DIMENSION_VIEW_FOLDER

	
MdmStandardDimension or MdmTimeDimension


	
View name

	
DIMENSION_VIEW

	
MdmStandardDimension or MdmTimeDimension


	
Data Security

	
DATA_SECURITY

	
MdmStandardDimension or MdmTimeDimension


	
dimension.xml object

	
AWMTree_parent_node_name

	
For a folder, the name of the <AWMNode>. For a value returned by the SQL query, the run-time object name.


	
Cubes

	
CUBE_FOLDER

	
AW


	
Cube name

	
CUBE

	
MdmCube


	
Measures

	
CUBE_MEASURE_FOLDER

	
MdmCube


	
Measure name

	
CUBE_MEASURE

	
MdmBaseMeasure


	
Calculated Measures

	
CUBE_DERIVED_MEASURE_FOLDER

	
MdmCube


	
Calculated measure name

	
CUBE_DERIVED_MEASURE

	
MdmDerivedMeasure


	
Mappings

	
CUBE_MAP

	
MdmCube


	
Views

	
CUBE_VIEW_FOLDER

	
MdmCube


	
View name

	
CUBE_VIEW

	
MdmCube


	
Cube Scripts

	
CUBE_SCRIPT_FOLDER

	
MdmCube


	
Cube script name

	
CUBE_SCRIPT

	
Script_name


	
Data Security

	
DATA_SECURITY

	
MdmCube


	
cube.xml object

	
AWMTree_parent_node_name

	
For a folder, the name of the <AWMNode>. For a value returned by the SQL query, the run-time object name.


	
Measure Folders

	
MEASURE_FOLDER_FOLDER

	
AW


	
Measure folder name

	
Measure_folder_name

	
MdmOrganizationalSchema


	
Languages

	
LANGUAGE

	
Languages


	
aw.xml object

	
AWMTree_parent_node_name

	
For a folder, the name of the <AWMNode>. For a value returned by the SQL query, the run-time object name.


	
OLAP DML Programs

	
AWMTREE_OLAP DML Programs

	
OLAP DML Programs


	
Program name

	
AWMTREE_OLAP DML Programs

	
Program_name


	
Maintenance Scripts

	
MAINTENANCE_SCRIPT_FOLDER

	
Schema name


	
Script name

	
MAINTENANCE_SCRIPT

	
Script name


	
Maintenance Reports

	
AWMTREE_Maintenance Reports

	
Maintenance Reports


	
Maintenance_report_name

	
AWMTREE_maintenance_report_name

	
Maintenance_report_name


	
schema.xml object

	
AWMTree_parent_node_name

	
For a folder, the name of the <AWMNode>. For a value returned by the SQL query, the run-time object name.


	
Data Security Roles

	
ACL_DOCUMENT_FOLDER

	
Data Security Roles


	
Security role name

	
Security role name

	
Security role name


	
Reports

	
AWMTREE_Reports

	
Reports


	
Report name

	
AWMTREE_report_name

	
Report name












Elements in the params Map for an AWMPlugin

The params Map contains information about the navigation tree object that is currently selected. Table 2-2, "Keys and Values of the params Map for a Non-custom Object" and Table 2-3, "Keys and Values of the params Map for a Custom Object" contain descriptions of the keys and values of the elements of the Map for an AWMPlugin The keys are String objects.

The params Map for the Database folder does not have a DATASOURCE, DATAPROVIDER, or GETDATAPROVIDER key. The params Map objects for the higher level navigation tree objects, those above the individual analytic workspaces, have a null value for the DATAPROVIDER key until the user selects a tree object that requires OLAP metadata. Other than for those exceptions, the params Map for a navigation tree object has the keys and values listed in the tables.


Params Map Elements for Non-custom Objects

Table 2-2 lists the keys and values of the elements of the params Map for non-custom navigation tree objects. Custom navigation tree objects are specified by an <AWMNode> element in a SQL Report XML document and have a type that begins with the prefix AWMTree.


Table 2-2 Keys and Values of the params Map for a Non-custom Object

	Key	Value
	
AWM_VERSION

	
A String that is the version number of Analytic Workspace Manager.


	
DATAPROVIDER

	
An oracle.olapi.metadata.mdm.MdmMetadataProvider that is the metadata provider for the session.


	
BIND_MAP

	
An empty Map.


	
DATASOURCE

	
A java.sql.DataSource.


	
GETDATAPROVIDER

	
An implementation of the oracle.olap.awm.plugin.OLAPDataProvider interface. The interface specifies a method that gets an MdmMetadataProvider.











Params Map Elements for Custom Objects

Table 2-3 lists the keys and values of the elements of the params Map for custom navigation tree objects. A custom object is specified by an <AWMNode> element in a SQL Report XML document.


Table 2-3 Keys and Values of the params Map for a Custom Object

	Key	Value
	
AWM_VERSION

	
A String that is the version number of Analytic Workspace Manager.


	
DATAPROVIDER

	
An oracle.olapi.metadata.mdm.MdmMetadataProvider that is the metadata provider for the session.


	
BIND_MAP

	
A java.util.Map that contains bind variables from the <AWMNode> element and from the parent of the element, and from Analytic Workspace Manager.


	
DATASOURCE

	
A java.sql.DataSource object.


	
GETDATAPROVIDER

	
An implementation of the oracle.olap.awm.plugin.OLAPDataProvider interface. The interface specifies a method that gets an MdmMetadataProvider.


	
ISFOLDER

	
A String that is TRUE if the <AWMNode> that specifies the plugin-in is a folder or FALSE if it is not.


	
NODE_TYPE

	
For a nested <AWMNode>, a String that is the name of the parent <AWMNode>. For an <AWMNode> that is a folder, the name of the node.


	
TYPE

	
A String that is the value of the type attribute of the <AWMNode> that specifies the plug-in.








The BIND_MAP Map contains bind variables that are associated with the navigation tree object that is currently selected. Table 2-4 contains descriptions of the keys and values in the BIND_MAP Map.

This Map includes the bind variables that appear in the SQL statements of the <AWMNode> and the parent <AWMNode>. It also includes other bind variables for the currently selected object in the navigation tree.

The keys are String objects. A bind variable is specified by the type attribute of an <AWMNODE> element of a custom navigation tree object or is set internally by Analytic Workspace Manager. A plug-in gets the run-time value of the bind variable from the BIND_MAP Map. For examples of bind map Map keys and values, see Table 2-6.




	
Note:

When you reference the key for a bind variable in your plug-in, be sure to use lowercase, as in {owner} or {measureobj} or {dimension_name}.








Table 2-4 Keys and Values of the BIND_MAP Map

	Key	Value
	
aw_name

	
A String that contains the name of the currently selected analytic workspace.


	
owner

	
A String that contains the name of the owner of the currently selected analytic workspace.


	
schema

	
A String that contains the name of the owner of the currently selected schema.


	
user

	
A String that contains the name of the user who is connected to the database.


	
Other bind variables

	
One or more elements, each of which has a bind variable as a key and has the run-time value of the bind variable as the value.

Examples of other bind variable keys are dimension_name and cube_name. For examples of other bind variables that can be in the Map see the "Example params Map Elements for an AWMPlugin" and the examples in Chapter 3, "Examples of Analytic Workspace Manager Plug-ins".














Example params Map Elements for an AWMPlugin

Examples of the keys and values of a params Map for a custom object are in Table 2-5 and in Table 2-6. All of the values are String objects except those for the DATAPROVIDER and DATASOURCE keys.

Table 2-6 has the elements of the params Map that Analytic Workspace Manager passes to the methods of DeleteDimPlugin when the user right-clicks the CUSTOMER dimension in the MyDims folder, as shown in Figure 3-2. The MyDims folder is created by the aw.xml document in Example 3-7.

The figure shows the menu that DeleteDimPlugin displays. The property inspector in the figure has the output of DimEditorPlugin, because that plug-in is also activated when the user selects a dimension in the MyDims folder.

An example of getting a value from the params Map is the following line from the isSupported method in the DeleteDimPlugin class in Example 3-2.


Object nodeType = params.get("TYPE");



Table 2-5 Keys and Values of the params Map for DeleteDimPlugin

	Key	Value	Description
	
AW

	
An AW

	
The current analytic workspace object.


	
AWM_VERSION

	
12.1.0.1.0

	
The version number of Analytic Workspace Manager.


	
BIND_MAP

	
A Map

	
A container for bind variables related to the current object.


	
DATAPROVIDER

	
An MdmMetadataProvider

	
The metadata provider for the session.


	
DATASOURCE

	
A DataSource

	
The current data source.


	
GETDATAPROVIDER

	
An OLAPDataProvider

	
An implementation of the OLAPDataProvider interface.


	
ISFOLDER

	
FALSE

	
Specifies that the <AWMNode> is not a folder.


	
NODE_TYPE

	
MyDims

	
The name of the parent <AWMNode>.


	
TYPE

	
dimobj

	
The type of the <AWMNode> that specifies the plug-in.








Table 2-6 has the elements of the Map that is the value of the BIND_MAP key in the params Map. An example of getting a value from the BIND_MAP Map is the following lines from the handle method in the DeleteDimPlugin class in Example 3-2.


Map bindMap = (Map)params.get("BIND_MAP");
...
String owner = (String)bindMap.get("owner");



Table 2-6 Keys and Values of the BIND_MAP Map for DeleteDimPlugin

	Key	Value	Description
	
aw_name

	
GLOBAL

	
The name of the current analytic workspace.


	
dimobj

	
CUSTOMER

	
The run-time value of the dimension currently selected in the MyDims folder.


	
owner

	
GLOBAL

	
The name of the owner of the analytic workspace.


	
schema

	
GLOBAL

	
The name of the current schema.


	
user

	
global

	
The name of the current user.














Describing the ViewerPlugin and EditorPlugin Interfaces

As described in "Creating Reports in Object Folders", with certain XML documents you can add objects to the Schemas, Analytic Workspaces, Dimensions, and Cubes folders in the Analytic Workspace Manager navigation tree. You add objects to the navigation tree by adding <AWMNode> elements to an XML document.

With the sql attribute of an <AWMNode> element, you can specify a SQL SELECT statement. Analytic Workspace Manager displays the result of the statement either in the folder in the navigation tree or in the property inspector, or in both places. For more information about creating the XML documents and the SQL statements, see "Creating Reports in Object Folders".

With the viewClass attribute of an <AWMNode> element, you can specify a Java plug-in for viewing or editing database objects. You can add a viewer or an editor for relational objects or OLAP objects. Relational objects include tables, materialized views, and so on, and OLAP objects include dimensions, cubes, and so on. To add a viewer, have the viewClass attribute specify an implementation of the ViewerPlugin interface. To add an editor, have the viewClass attribute specify an implementation of the EditorPlugin interface. The viewer or editor plug-in displays in the property inspector.


Describing the ViewerPlugin Interface

The following is the oracle.olap.awm.plugin.ViewerPlugin interface.


package oracle.olap.awm.plugin

import java.sql.Connection;
import java.util.Map;
import javax.swing.JPanel;

public interface ViewerPlugin
{
  public boolean isViewerForType(Connection conn, String name) 
    throws Exception;

  public JPanel getPanel(Connection conn, String name, Map params)
    throws Exception;

  public void cleanup(String name);
}


When the Analytic Workspace Manager user selects the navigation tree object that is associated with the ViewerPlugin, Analytic Workspace Manager calls the methods of a ViewerPlugin in the sequence illustrated in Figure 2-5.


Figure 2-5 Sequence of Calls to a ViewerPlugin

[image: Description of Figure 2-5 follows]






Analytic Workspace Manager first calls the isViewerForType method and passes it the following parameters:

	
conn, which is a java.sql.Connection object that represents the current connection to the Oracle Database instance.


	
name, which is a String that contains the name of the <AWMNode> that is the parent of the <AWMNode> that has the viewClass attribute.




If the plug-in returns true, Analytic Workspace Manager calls the getPanel method and passes it the same conn and name parameters plus the following parameter.

	
params, which is a java.util.Map object that contains information about the currently selected navigation tree object. The information includes the run-time values for attributes of the <AWMNode> element that has the viewClass attribute and from the parent <AWMNode>. The plug-in can use this information in specifying data to display or to retrieve from the database. The keys and values of the Map are described in Table 2-7. For a description of the Map keys and values, see "Elements in the params Map for a ViewerPlugin or EditorPlugin".




When the user selects a different navigation tree object, Analytic Workspace Manager calls the cleanup method of the plug-in. It passes the method the same name parameter. In this method you can perform any cleanup that your plug-in requires.





Describing the EditorPlugin Interface

The EditorPlugin interface extends the ViewerPlugin interface. The following is the oracle.olap.awm.plugin.EditorPlugin interface.


package oracle.olap.awm.plugin

import java.awt.Component;
import java.sql.Connection;
import java.util.Map;

public interface EditorPlugin extends ViewerPlugin
{
  public void setValueChanged(Connection conn, String name, Map params,
    PanelChanged parent);

  public boolean validate(Connection conn, Component parent, String name, 
    Map params) throws Exception;

  public boolean save(Connection conn, Component parent, String name,
    Map params) throws Exception;

  public void revert(Connection conn, Component parent, String name, 
    Map params) throws Exception;

  public void showHelp(Connection conn, Component parent, String name,
    Map params) throws Exception;
}


For an EditorPlugin, Analytic Workspace Manager initially calls the isViewerForType, setValueChanged, and getPanel methods, as shown in Figure 2-6, "Sequence of Calls to an EditorPlugin". For an example of the display of an EditorPlugin, see Figure 3-11.

If the user makes a change in the property inspector, then the Apply and Revert buttons become active. If the user clicks Apply, then Analytic Workspace Manager calls the validate method of the EditorPlugin. If the value is valid, then Analytic Workspace Manager calls the save method. If the user clicks Revert, then Analytic Workspace Manager calls revert. If the user clicks the Help button, then Analytic Workspace Manager calls showHelp.

All of the methods of an EditorPlugin have the same conn, name, and param parameters as the getPanel method. Those parameters are described in "Describing the ViewerPlugin and EditorPlugin Interfaces". The methods also have the following additional parameter.

	
parent, which for the setValueChanged method is an implementation of the oracle.olap.awm.plugin.PanelChanged interface. That interface specifies a single method, public void changed();. Whenever the user interacts with the editing field of your EditorPlugin, the EditorPlugin should call the changed method of the PanelChanged object. For the other EditorPlugin methods, the parent parameter is the parent component.





Figure 2-6 Sequence of Calls to an EditorPlugin

[image: Description of Figure 2-6 follows]










Elements in the params Map for a ViewerPlugin or EditorPlugin

The params Map for a ViewerPlugin or an EditorPlugin does not contain a BIND_MAP Map. Instead, the bind variables are keys in the params Map. Table 2-7 contains descriptions of the keys and values of the elements of the Map for a ViewerPlugin or an EditorPlugin.


Table 2-7 Keys and Values of the params Map for a ViewerPlugin or EditorPlugin

	Key	Value
	
AW

	
An oracle.olapi.metadata.deployment.AW.


	
aw_name

	
A String that contains the name of the currently selected analytic workspace.


	
DATAPROVIDER

	
An oracle.olapi.metadata.mdm.MdmMetadataProvider object that is the metadata provider for the session.


	
DATASOURCE

	
A java.sql.DataSource object.


	
ISFOLDER

	
A String that is TRUE if the <AWMNode> that specifies the plugin-in is a folder or FALSE if it is not.


	
owner

	
A String that contains the name of the owner of the currently selected analytic workspace.


	
schema

	
A String that contains the name of the owner of the currently selected schema.


	
TYPE

	
A String that is the value of the type attribute of the <AWMNode> that specifies the plug-in.


	
user

	
A String that contains the name of the user who is connected to the database.


	
Other bind variables

	
One or more elements, each of which has a bind variable as a key and has the run-time value of the bind variable as the value. For a plug-in that is specified by the viewClass attribute of an <AWMNode> in an XML document, the number of bind variables depends upon how many bind variables are in the SQL statement of the <AWMNode> and the parent <AWMNode>.

Examples of other bind variable keys are dimension_name and cube_name. For examples of other bind variables that can be in the Map see the "Example params Map Elements for a ViewerPlugin and an EditorPlugin" and the examples in Chapter 3, "Examples of Analytic Workspace Manager Plug-ins".












Example params Map Elements for a ViewerPlugin and an EditorPlugin

Examples of the keys and values of a params Map for a ViewerPlugin or EditorPlugin are in Table 2-8. All of the values are String objects except those for the DATAPROVIDER and DATASOURCE keys.


Example params Map Elements for a ViewerPlugin

The cube.xml document in Example 3-5 has a parent <AWMNode> that has the name MyMeasures, a type of measureobj, and a SQL statement that references the bind variable cube_name. The child <AWMNode> has the type measureview and has a viewClass attribute that specifies the plug-in MeasureViewerPlugin.

Table 2-8 has the elements of the params Map that Analytic Workspace Manager passes to the methods of the MeasureViewerPlugin when the user selects the UNITS measure in the MyMeasures folder, as shown in Figure 3-7. The property inspector has the output of the plug-in, which is simply the name of the measure.

The MeasureViewerPlugin class in Example 3-6 gets the value of a bind variable in the following line in the getPanel method.


measureobj = params.get("measureobj");



Table 2-8 Keys and Values of the params Map for MeasureViewerPlugin

	Key	Value	Description
	
AW

	
An AW.

	
The current analytic workspace object.


	
aw_name

	
GLOBAL

	
The name of the current analytic workspace.


	
cube_name

	
UNITS_CUBE

	
The name of the current cube.


	
DATAPROVIDER

	
An MdmMetadataProvider

	
The metadata provider for the session.


	
DATASOURCE

	
A DataSource

	
The current data source.


	
ISFOLDER

	
FALSE

	
Indicates that the navigation tree object is not a folder.


	
measureobj

	
UNITS

	
The name of the current measure.


	
NODE_TYPE

	
MyMeasures

	
The name of the parent <AWMNode>.


	
owner

	
GLOBAL

	
The name of the owner of the analytic workspace.


	
schema

	
GLOBAL

	
The name of the current schema.


	
TYPE

	
measureview

	
The type of the <AWMNode>.


	
user

	
global

	
The name of the current user.











Example params Map Elements for an EditorPlugin

Table 2-9 has the elements of the params Map that Analytic Workspace Manager passes to the methods of the DimEditorPlugin when the user selects the CHANNEL dimension in the MyDims folder, as shown in Figure 3-11. The property inspector in the figure has the output of the DimEditorPlugin.

An example of getting a value from the params Map is the following line from the getMetadataProvider method in the DimEditorPlugin class in Example 3-9.


Object dp = params.get("DATAPROVIDER");


Another example of getting a value from the params Map is the following lines from the getDimension method in the DimEditorPlugin class.


Object obj = null;
...
obj = params.get("dimobj");



Table 2-9 Keys and Values of the params Map for DimEditorPlugin

	Key	Value	Description
	
AW

	
An AW.

	
The current analytic workspace object.


	
aw_name

	
GLOBAL

	
The name of the current analytic workspace.


	
DATAPROVIDER

	
An MdmMetadataProvider

	
The metadata provider for the session.


	
DATASOURCE

	
A DataSource

	
The current data source.


	
dimobj

	
CHANNEL

	
The run-time value of the dimension currently selected in the MyDims folder.


	
ISFOLDER

	
TRUE

	
Indicates that the navigation tree object is a folder.


	
NODE_TYPE

	
MyDims

	
The name of the parent <AWMNode>.


	
owner

	
GLOBAL

	
The name of the owner of the analytic workspace.


	
schema

	
GLOBAL

	
The name of the current schema.


	
TYPE

	
dimobj

	
The type of the <AWMNode>.


	
user

	
global

	
The name of the current user.
















Steps in Creating a Plug-in

The prerequisites for creating an Analytic Workspace Manager plug-in are the following:

	
For the Analytic Workspace Manager that is part of an Oracle Database Enterprise Edition distribution, include the following files in your development environment. These JAR files are located in the Oracle_home/olap/api/lib directory in the Oracle Database installation.

	
awm.jar, which contains the plug-in interfaces.


	
olap_api.jar, which contains the classes in the Oracle OLAP Java API.


	
awxml.jar, which contains the oracle.AWXML.AW class, which the AWMPlugin interface includes for compatibility with the 10g release of Analytic Workspace Manager.





	
For an Analytic Workspace Manager that you have downloaded from Oracle Technology Network, include the awm11.2.0.2.0.jar file in your development environment.


	
Compile the code with JDK 1.6.







	
Note:

Only plug-ins compiled with JDK 1.6 are compatible with Analytic Workspace Manager in 12c Release 1 (12.1).







To create an Analytic Workspace Manager plug-in, do the following:

	
Create a class that implements a plug-in interface.

	
For an AWMPlugin, do the following.

	
In the isSupported method, specify the objects in the navigation tree to which the plug-in applies. Be sure to have this method return quickly.


	
Have the getMenu method return the text to display on the right-click menu for navigation tree objects that the plug-in supports.


	
In the handle method, include the code for the operations that the plug-in performs.


	
Have the refreshTree method return a boolean that specifies whether to refresh the navigation tree.





	
For ViewerPlugin, do the following.

	
In the isViewerForType method, specify the type of navigation tree objects to which the plug-in applies.


	
Have the getPanel method create the user interface elements for Analytic Workspace to display and specify the actions for them.


	
In the cleanup method, perform any cleaning up that your plug-in requires.





	
For an EditorPlugin, do the steps for a ViewerPlugin and add the following.

	
In the setValueChanged method, store the PanelChanged object from Analytic Workspace Manager. Call the changed method of the PanelChanged whenever you want to update the display in the property inspector.


	
In the validate method, validate any change that the user has made.


	
In the save method, perform the actions required to make the changes and then commit the current Transaction to save the changes.


	
In the revert method, display the object as it was before the changes.








	
Using JDK 1.6, compile the plug-in and any other classes that it uses.


	
Deploy the plug-in, XML documents, and other classes to a JAR file. You can include multiple plug-ins in the same JAR file.


	
Put the JAR file in the plug-ins directory.


	
Start Analytic Workspace Manager.







	
Note:

Analytic Workspace Manager only loads the contents of the JAR files upon startup, so if you put a new or updated version of a JAR file in the plug-ins directory, then you must restart Analytic Workspace Manager.







To use a ViewerPlugin or EditorPlugin, you generally do the following steps.

	
Create an XML document that has the name schema.xml, aw.xml, cube.xml, or dimension.xml, depending on where in the navigation tree you want the custom objects to appear. In the XML document, you can have multiple <AWMNode> elements at the same level. You can also nest one or more <AWMNode> elements in a parent <AWMNode> element.


	
Develop the SQL statements to specify with <AWMNode> elements.


	
Implement the ViewerPlugin or EditorPlugin interface.


	
Specify the SQL statement for an <AWMNode> with the sql attribute. Specify a plug-in with the viewClass attribute.


	
Deploy the XML document and plug-in implementation in a JAR file. You can have multiple XML documents and plug-ins in the same JAR file. You can put the XML documents in the same JAR file as the plug-ins.


	
Put the JAR file in the Analytic Workspace Manager directory for plug-ins.


	
Start Analytic Workspace Manager.









Describing the Available Plug-ins

You can provide information about the plug-ins that you add to Analytic Workspace Manager by creating an awmplugin.xml document. In that XML document, you can provide a name, a version number, and a description for each plug-in. Analytic Workspace Manager displays that information, along with the status of the plug-in, when a user selects the Plugins tab after selecting About on the Help menu.


Creating an XML Document for Descriptions of Plug-ins

	
Create a text file named awmplugin.xml.


	
Begin the file with an XML declaration like this one:


<?xml version="1.0" encoding="utf-8"?>


Specify the appropriate encoding for your site.


	
Enter the XML for the plug-in descriptions, as described in "Reference: Elements for Plug-in Descriptions".


	
For the name attribute of the <Plugin> element, enter a name for the plug-in. For the version attribute, enter the version number of the plug-in. For the class attribute, enter the class that contains the plug-in. For the <Description> element, enter a description of the plug-in.


	
In the plug-directory, create a JAR file that contains the awmplugin.xml document. Alternatively, you could add the awmplugin.xml document to a JAR file that contains the XML documents described in "Creating Reports in Object Folders" or the plug-ins.




For a sample awmplugin.xml file, see "Example of Plug-in Descriptions".






Reference: Elements for Plug-in Descriptions

An XML document for describing the available plug-ins has the format shown in Example 2-1.


Example 2-1 XML Structure for Descriptions of Plug-ins


<AWMPlugins>
  <Plugin>
    <Description>
         .
         .
         .






<AWMPlugins>

The root element that identifies this document as containing information about the Java plug-ins that are available to Analytic Workspace Manager.


Contains

<Plugin>


Attributes

None






<Plugin>

Contains information about a plug-in.


Contains

<Description>


Attributes

<Plugin> has the following attributes:

	
name: A name for the plug-in.


	
version: A version number for the plug-in.


	
class: The Java class that implements the plug-in.









<Description>

Contains a description of the plug-in.


Contains

None


Attributes

None












3 Examples of Analytic Workspace Manager Plug-ins

This chapter contains examples of the Java classes that implement the AWMPlugin, ViewerPlugin, and EditorPlugin interfaces. It also contains the example XML documents that specify the plug-ins.

This chapter contains the following topics:

	
Availability of Example Classes and XML Documents


	
Examples of AWMPlugin


	
Examples of ViewerPlugin and EditorPlugin


	
Example of Plug-in Descriptions






Availability of Example Classes and XML Documents

The examples of Java classes and XML documents in this chapter and in Chapter 1 contain the complete code for the class or document. The complete code is also available in a compressed file that you can download from the Oracle Technology Network (OTN) website. The download includes the compiled class files for the plug-ins, as well. The OTN website is at

http://www.oracle.com/technetwork/database/options/olap/index.html

To get the examples, in the Download section of the web page, select Sample Code and Schemas. On the Oracle OLAP Downloads page, in the AWM Plug-ins for Oracle OLAP 11g section, in the AWM Java Plug-in and XML for 11.2.0.1 line, click examples.

Download the compressed file and extract the contents. The compressed file contains the following files.


	Filename	Description
	readme.txt	Briefly describes the contents of the zip file.
	awmcalcs.xml	Contains the XML for Example 1-9, "Sample AWMCalcs Document".
	awmtree.xml	Contains the XML for Example 1-3, "Passing the Name of a View to a SELECT Statement".
	plugin112.jar	Contains a directory named plugin112, which is the package containing the examples. In the directory are the xml, java, and class files for the examples in Chapter 3.






You put the awmcalcs.xml and awmtree.xml files in the same directory as the Analytic Workspace Manager executable file. You put the plugin112.jar file in the directory that you specify for plug-ins, as described in "Enabling Analytic Workspace Manager Plug-ins".






Examples of AWMPlugin

The examples of an AWMPlugin are in the following topics.

	
ViewXMLPlugin Example


	
DeleteDimPlugin Example




The examples do not include the documentation comments of the methods of the AWMPlugin interface or the input parameters and return values of those methods. Those methods and parameters are described in "Describing the AWMPlugin Interface".



ViewXMLPlugin Example

The ViewXMLPlugin class displays an XML representation of a measure or a custom measure of a cube in the Cubes folder in the Analytic Workspace Manager navigation tree. Example 3-1 contains the code for the class. The plug-in applies to oracle.olap.metadata.mdm.MdmBaseMeasure and oracle.olap.metadata.mdm.MdmDerivedMeasure objects, which correspond to the Measure and Calculated Measure objects, respectively, of a cube.

The plug-in gets and displays an XML representation of a measure. Figure 2-3 shows the menu that Analytic Manager Workspace displays for ViewXMLPlugin when a user right-clicks a measure. For an example of the dialog box that ViewXMLPlugin displays, see Figure 3-1, "Dialog Box Displayed by ViewXMLPlugin".


Example 3-1 The ViewXMLPlugin Class


import java.awt.BorderLayout;
import java.awt.Font;
import java.awt.Frame;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import java.sql.Connection;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import javax.swing.JButton;
import javax.swing.JDialog;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

import oracle.AWXML.AW;
import oracle.olap.awm.plugin.AWMPlugin;
import oracle.olapi.metadata.mdm.MdmBaseMeasure;
import oracle.olapi.metadata.mdm.MdmDerivedMeasure;
import oracle.olapi.metadata.mdm.MdmMetadataProvider;
import oracle.olapi.metadata.mdm.MdmObject;

/**
 * An implementation of the AWMPlugin interface that displays the XML
 * representation of an Oracle OLAP measure object.
 */
public class ViewXMLPlugin implements AWMPlugin
{
  public boolean isSupported(Connection conn, String type, Object obj, 
                             AW aw, Map params)
  {
    // Support MdmBaseMeasure and MdmDerivedMeasure objects.
    if (obj instanceof MdmBaseMeasure || obj instanceof MdmDerivedMeasure)
    {
      return true;
    }
    return false;
  }

  public String getMenu(Connection conn, String type, Object obj, AW aw, 
                        Map params)
  {
    // Text to display on the right-click menu.
    String menu = "View XML Example Plug-in";
    return menu;
  }

  public void handle(Frame parent, Connection conn, String type, Object obj,
                     AW aw, Map params)
  {
    if (obj instanceof MdmObject)
    {
      // Get the MdmMetadataProvider to use in exporting the XML.
      Object objdp = params.get("DATAPROVIDER");
      if (objdp != null)
      {
        MdmObject mobj = (MdmObject)obj;
        MdmMetadataProvider mdp = (MdmMetadataProvider)objdp;
 
        // Get the XML representation of the MdmObject.
        List objects = new ArrayList();
        objects.add(mobj);
        Map renameMap = null;
        boolean includeOwnerString = true;
        String title = "XML for " + mobj.getName();
        try
        {
          String xml =
            mdp.exportFullXML(objects, renameMap, includeOwnerString);
          // Create a dialog box and display the XML.
          DisplayXMLDialog dxd = new DisplayXMLDialog(parent, title, true,
                                                      xml);
        }
        catch (IOException ie)
        {
          // Ignore error.
        }
      }
    }
  }

  public boolean refreshTree(Connection conn, String type, Object obj, AW aw,
                             Map params)
  {
    // This example does not create new metadata objects, so return false.
    return false;
  }

  /**
   * An inner class that creates a dialog box that displays the XML.
   */
  class DisplayXMLDialog extends JDialog implements ActionListener
  {
    /**
     * Creates a DisplayXMLDialog for displaying the contents of the xml
     * parameter.
     * 
     * @param parent A Frame that is provided by Analytic Workspace Manager.
     * @param title A String that contains text to use as the title for the
     *              dialog box.
     * @param modal A boolean that specifies whether the dialog box is modal.
     * @param xml A String that contains the XML to display.
     */
    public DisplayXMLDialog(Frame parent, String title, boolean modal,
                            String xml)
    {
      super(parent);
      setLocation(200, 200);
      setTitle(title);
      setModal(modal);
      
      try
      {
        displayXML(xml);
      }
      catch (Exception e)
      {
        e.printStackTrace();
      }
    }
 
    /**
     * Creates a dialog box and displays the contents of a String.
     * 
     * @param xml A String that contains the XML to display.
     */
    private void displayXML(String xml)
    {
      JTextArea ta = new JTextArea(xml);
      ta.setEditable(false);
      Font of = ta.getFont();
      Font f = new Font("Courier New", of.getStyle(), of.getSize());
      ta.setFont(f);

      JScrollPane p = new JScrollPane();
      p.getViewport().add(ta);

      JPanel buttonPane = new JPanel();
      JButton button = new JButton("Close");
      buttonPane.add(button);
      button.addActionListener(this);
      getContentPane().add(buttonPane, BorderLayout.SOUTH);
      
      getContentPane().add(p, BorderLayout.NORTH);
      setDefaultCloseOperation(DISPOSE_ON_CLOSE);
      pack();
      setVisible(true);
    }

    /**
     * Performs an action for the Close button.
     * 
     * @param e An ActionEvent for the Close button.
     */
    public void actionPerformed(ActionEvent e)
    {
      setVisible(false);
      dispose();
    }
  }
}




Figure 3-1 illustrates the dialog box that ViewXMLPlugin displays for the PROFIT calculated measure in the UNITS_CUBE folder.


Figure 3-1 Dialog Box Displayed by ViewXMLPlugin

[image: Description of Figure 3-1 follows]










DeleteDimPlugin Example

The DeleteDimPlugin class deletes the dimension that the user has selected in the navigation tree. The plug-in only applies to dimension objects that are in a custom folder and that have dimobj as the value of the TYPE key of the params Map. The DeleteDimPlugin plug-in is specified by the aw.xml document in Example 3-7.

Example 3-2 contains the code for the DeleteDimPlugin class.


Example 3-2 The DeleteDimPlugin Class


package plugin112;
 
import java.awt.Frame;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JOptionPane;
import oracle.AWXML.AW;
import oracle.olap.awm.plugin.AWMPlugin;
import oracle.olapi.metadata.mdm.MdmMetadataProvider;
import oracle.olapi.metadata.mdm.MdmObject;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;
import oracle.olapi.metadata.mdm.MdmSchema;

/**
 * An implementation of the AWMPlugin interface that can delete
 * an Oracle OLAP dimension object in a custom folder.
 */
public class DeleteDimPlugin implements AWMPlugin
{
  // This plug-in applies to dimension objects in a custom folder.
  public boolean isSupported(Connection conn, String type, Object obj, AW aw,
                             Map params)
  {
    if (params != null)
    {
      // Get the value of the type attribute of the AWMNode that specifies this
      // plug-in.
      Object nodeType = params.get("TYPE");
      if (nodeType != null && ((String)nodeType).equalsIgnoreCase("dimobj"))
        return true;
    }
    return false;
  }
 
  public String getMenu(Connection conn, String type, Object obj, AW aw,
                        Map params)
  {
    Object dimName = null;
    if (obj != null && obj instanceof String)
    {
      dimName = (String) obj;
    }
    // Text to display on the right-click menu.
    return "Example Plug-in: Delete Dimension " + dimName;
  }
 
  public void handle(Frame parent, Connection conn, String type, Object obj,
                     AW aw, Map params)
  {
    String dimName = "";
    // The obj parameter should be the name of the currently selected dimension.
    if (obj != null && obj instanceof String)
    {
      dimName = (String) obj;
      String title = "Delete Dimension";
      if (JOptionPane.showConfirmDialog(parent, "Delete " + dimName + "?",
                                        title, JOptionPane.YES_NO_OPTION) ==
                                        JOptionPane.NO_OPTION)
        return;
    }

    if (params != null)
    {
      Map bindMap = (Map)params.get("BIND_MAP");
      if (bindMap != null)
      {
        // Get the name of the owner, which is also the name of the schema.
        String owner = (String)bindMap.get("owner");
        // Get the currently selected dimension.
        MdmPrimaryDimension dim = getDimension(dimName, owner, params);

        if (dim != null)
        {
          // Get the schema object that contains the dimension.
          MdmSchema schema = dim.getOwner();
          schema.removeDimension(dim);
          MdmMetadataProvider mdp = getMetadataProvider(params);
          // Get the TransactionProvider and commit the current Transaction.
          try
          {
            mdp.getDataProvider()
               .getTransactionProvider()
               .commitCurrentTransaction();
            JOptionPane.showMessageDialog(parent,
                                          owner + "." + dimName +
                                          " dimension has been deleted.");
          }
          catch (Exception e)
          {
            JOptionPane.showMessageDialog(parent, e.getMessage(), "Error",
                                          JOptionPane.ERROR_MESSAGE);
            // Roll back the current Transaction.
            try
            {
              mdp.getDataProvider()
                 .getTransactionProvider()
                 .rollbackCurrentTransaction();
            }
            catch (Exception e2)
            {
              // Ignore the exception.
            }
          }
        }
      }
      else
      {
        return;
      }
    }
  }
 
  public boolean refreshTree(Connection conn, String type, Object obj, AW aw,
                             Map params)
  {
    return true;
  }
 
  // Get the MdmMetadataProvider.
  private MdmMetadataProvider getMetadataProvider(Map params)
  {
    Object dp = params.get("DATAPROVIDER");
    if (dp instanceof MdmMetadataProvider)
    {
      MdmMetadataProvider mdp = (MdmMetadataProvider)dp;
      return mdp;
    }
    return null;
  }
 
  // Get the currently selected dimension.
  private MdmPrimaryDimension getDimension(String dimName, String schema,
                                           Map params)
  {
    if (params != null)
    {
      MdmMetadataProvider mdp = getMetadataProvider(params);
      if (mdp != null)
      {
        // Get the dimension from the MdmMetadataProvider.
        MdmObject mobj = mdp.getMetadataObject(schema + "." + dimName);
        if (mobj != null && mobj instanceof MdmPrimaryDimension)
        {
          MdmPrimaryDimension dim = (MdmPrimaryDimension)mobj;
          return dim;
        }
      }
    }
    return null;
  }
}




Figure 3-2 shows the menu that Analytic Manager Workspace displays for DeleteDimPlugin. The figure shows the menu that appears when a user right-clicks the CUSTOMER dimension in the MyDims folder. The MyDims folder is created by the aw.xml document in Example 3-7.


Figure 3-2 Right-click Menu Displayed by DeleteDimPlugin

[image: Description of Figure 3-2 follows]






If the user clicks Example Plug-in: Delete Dimension CUSTOMER, then DeleteDimPlugin displays the dialog box shown in Figure 3-3.


Figure 3-3 Dialog Box Displayed by DeleteDimPlugin

[image: Description of Figure 3-3 follows]












Examples of ViewerPlugin and EditorPlugin

The example ViewerPlugin and EditorPlugin implementations are in the following topics:

	
LevelViewerPlugin Example


	
MeasureViewerPlugin Example


	
CubeViewerPlugin Example


	
DimEditorPlugin Example




The topics include the XML documents that specify the plug-ins.

The methods of the ViewerPlugin and EditorPlugin interfaces are described in "Describing the ViewerPlugin and EditorPlugin Interfaces".



LevelViewerPlugin Example

The dimension.xml document in Example 3-3 has an <AWMNode> that specifies a folder named MyLevels and a SQL statement that selects the names of the levels of the currently selected dimension from the USER_CUBE_DIM_LEVELS table. An unnamed child <AWMNode> specifies the LevelViewerPlugin. Figure 3-4 shows the navigation tree folder and the display in the property inspector for the document.


Example 3-3 Creating a dimension.xml Document


<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
  <AWMNode name="MyLevels"
           type="levelobj"
           sql="select level_name from user_cube_dim_levels where dimension_name = {dimension_name} ">
    <AWMNode type="levelview"
             viewClass="plugin112.LevelViewerPlugin"/>  
  </AWMNode>
</AWMTree>




Example 3-4 contains the LevelViewerPlugin class. The class displays the name of the currently selected level, as shown in Figure 3-5.


Example 3-4 The LevelViewerPlugin Class


package plugin112;
 
import java.awt.FlowLayout;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JLabel;
import javax.swing.JPanel;
import oracle.olap.awm.plugin.ViewerPlugin;
 
public class LevelViewerPlugin implements ViewerPlugin
{
  public boolean isViewerForType(Connection conn, String name)
    throws Exception
  {
    return true;
  }
 
  public JPanel getPanel(Connection conn, String name, Map params)
    throws Exception
  {
    JPanel panel = new JPanel();
    panel.setLayout(new FlowLayout());
    // Get the name of the current level.
    Object obj = params.get("levelobj");
    if (obj instanceof String)
    {
      String levelName = (String)obj;
      panel.add(new JLabel(levelName));
    }
    return panel;
  }
  
  public void cleanup(String name)
  {     
  }
}




Figure 3-4 shows the results of the MyLevels <AWMNode> in the dimension.xml document. A MyLevels folder appears in each dimension folder of the analytic workspace. The user has selected the MyLevels folder in the PRODUCT folder. The result of the SQL statement of the <AWMNode> appears in the MyLevels folder. The property inspector displays the same SQL statement and the result of it, which is a list of the levels of the dimension.


Figure 3-4 Results of the MyLevels <AWMNode> in dimension.xml

[image: Description of Figure 3-4 follows]






Figure 3-5 shows the results of the unnamed child <AWMNode> of the MyLevels <AWMNode> in the dimension.xml document. The user has selected the FAMILY level in the MyLevels folder. The property inspector displays the user interface specified by LevelViewerPlugin. The plug-in displays the name of the level.


Figure 3-5 Results of LevelViewerPlugin

[image: Description of Figure 3-5 follows]










MeasureViewerPlugin Example

The cube.xml document in Example 3-5 has an <AWMNode> that specifies a folder named MyMeasures and a SQL statement that selects the names of the measures of the currently selected cube from the USER_CUBE_MEASURES table. An unnamed child <AWMNode> specifies the MeasureViewerPlugin plug-in. Figure 3-6 shows the navigation tree folder and the display in the property inspector for the document.


Example 3-5 Creating a cube.xml Document


<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
  <AWMNode name="MyMeasures"
           type="measureobj" 
           sql="select measure_name from user_cube_measures where cube_name = {cube_name}">
    <AWMNode type="measureview"
             viewClass="plugin112.MeasureViewerPlugin"/>
  </AWMNode>
</AWMTree>




Example 3-6 contains the MeasureViewerPlugin class. The class displays the name of the currently selected measure, as shown in Figure 3-7.


Example 3-6 The MeasureViewerPlugin Class


package plugin112;
 
import java.awt.FlowLayout;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JLabel;
import javax.swing.JPanel;
import oracle.olap.awm.plugin.ViewerPlugin;
 
public class MeasureViewerPlugin implements ViewerPlugin
{
  public boolean isViewerForType(Connection conn, String name)
    throws Exception
  {
    return true;
  }   
 
  public JPanel getPanel(Connection conn, String name, Map params)
    throws Exception
  {
    JPanel panel = new JPanel();
    panel.setLayout(new FlowLayout());

    // Get the name of the current measure.
    Object measureobj = null;
    if (params != null)
      measureobj = params.get("measureobj");

    if (measureobj instanceof String)
    {
      String measureName = (String)measureobj;
      panel.add(new JLabel(measureName));
    }
    return panel;
  }
 
  public void cleanup(String name)
  {   
  }
}




Figure 3-6 shows the results of the MyMeasures <AWMNode> in the cube.xml document. A MyMeasures folder appears in each cube folder of the analytic workspace. The user has selected the MyMeasures folder in the UNITS_CUBE folder. The result of the SQL statement of the <AWMNode> appears in the MyMeasures folder. The property inspector displays the same SQL statement and the result of it, which is a list of the measures and calculated measures of the cube.


Figure 3-6 Results of the MyMeasures <AWMNode> in cube.xml

[image: Description of Figure 3-6 follows]






Figure 3-7 shows the results of the unnamed child <AWMNode> of the MyMeasures <AWMNode> in the cube.xml document. The user has selected the UNITS measure in the MyMeasures folder. The property inspector displays the user interface specified by MeasureViewerPlugin. The plug-in displays the name of the measure.


Figure 3-7 Results of MeasureViewerPlugin

[image: Description of Figure 3-7 follows]










CubeViewerPlugin Example

The aw.xml document in Example 3-7 has an <AWMNode> that specifies a folder named MyDims. For a description of the MyDims <AWMNode>, see "DimEditorPlugin Example".

The aw.xml document also has an <AWMNode> that specifies a folder named MyCubes and a SQL statement that selects the names of the cubes of the current analytic workspace from the USER_CUBES table. An unnamed child <AWMNode> specifies the CubeViewerPlugin. Figure 3-8 shows the navigation tree folder and the display in the property inspector for the MyCubes <AWMNode>.


Example 3-7 Creating an aw.xml Document


<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
  <AWMNode name="MyDims"
           type="mydimfolder"
           viewSql="select dimension_name, dimension_type from user_cube_dimensions where aw_name = {aw_name}">
    <AWMNode type="dimobj"
             sql="select dimension_name from user_cube_dimensions where aw_name = {aw_name}"
             viewClass="plugin112.DimEditorPlugin">
    </AWMNode>
      <AWMNode name="MyLevels"
               type="levelobj"
               sql="select level_name from user_cube_dim_levels where dimension_name = {dimobj}">
        <AWMNode sql="select * from user_cube_dim_levels where dimension_name = {dimobj} and level_name = {levelobj}"/>
      </AWMNode>
  </AWMNode>
  <AWMNode name="MyCubes"
           type="cubeobj"
           sql="select cube_name from user_cubes where aw_name = {aw_name}">
    <AWMNode type="mycubeview"
             viewClass="plugin112.CubeViewerPlugin"/>
  </AWMNode>
</AWMTree>




Example 3-8 contains the CubeViewerPlugin class. The class displays the name of the currently selected cube, as shown in Figure 3-9.


Example 3-8 The CubeViewerPlugin Class


package plugin112;
 
import java.awt.FlowLayout;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JLabel;
import javax.swing.JPanel;
import oracle.olap.awm.plugin.ViewerPlugin;
 
public class CubeViewerPlugin implements ViewerPlugin
{
  public boolean isViewerForType(Connection conn, String name)
    throws Exception
  {
    return true;
  }
  
  public JPanel getPanel(Connection conn, String name, Map params)
    throws Exception
  {
    JPanel panel = new JPanel();
    panel.setLayout(new FlowLayout());
    // Get the name of the current cube.
    Object cubeobj = null;
    if (params != null)
      cubeobj = params.get("cubeobj");
    if (cubeobj instanceof String)
    {
      String cubeName = (String)cubeobj;
      panel.add(new JLabel(cubeName));
    }
    return panel;
  }
 
  public void cleanup(String name)
  {
  }
}




Figure 3-8 shows the results of the MyCubes <AWMNode> in the aw.xml document. A MyCubes folder appears in the GLOBAL analytic workspace folder. The user has selected the MyCubes folder. The result of the SQL statement of the <AWMNode> appears in the folder. The property inspector displays the same SQL statement and the result of it, which is a list of the cubes of the analytic workspace.


Figure 3-8 Results of the MyCubes <AWMNode> in aw.xml

[image: Description of Figure 3-8 follows]






Figure 3-9 shows the results of the unnamed child <AWMNode> of the MyCubes <AWMNode> in the aw.xml document. The user has selected the UNITS_CUBE cube in the MyCubes folder. The property inspector displays the user interface specified by CubeViewerPlugin. The plug-in displays the name of the cube.


Figure 3-9 Results of the CubeViewerPlugin

[image: Description of Figure 3-9 follows]










DimEditorPlugin Example

The aw.xml document in Example 3-7 has an <AWMNode> that specifies a folder named MyDims and a SQL statement that selects the names and types of the dimensions of the current analytic workspace from the USER_CUBE_DIMENSIONS table. Figure 3-10 shows the navigation tree folder and the display in the property inspector for the MyDims <AWMNode>.

An unnamed child <AWMNode> specifies a SQL statement that selects the names of the dimensions and also specifies the DimEditorPlugin. Figure 3-11 shows the navigation tree folder and the display in the property inspector for the MyDims <AWMNode>.

The <AWMNode> named MyLevels, nested in the unnamed <AWMNode>, selects the names of the levels from the USER_CUBE_DIM_LEVELS table for the currently selected dimension. The MyLevels <AWMNode> has an unnamed nested <AWMNode> that selects all columns from the USER_CUBE_DIM_LEVELS table for the currently selected dimension and level.

Example 3-9 contains the DimEditorPlugin class. The class displays the name and the short description of the currently selected dimension, as shown in Figure 3-11. The user can change the value of the short description.


Example 3-9 The DimEditorPlugin Class


package plugin112;
 
import java.awt.Component;
import java.awt.GridLayout;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;
import oracle.olap.awm.plugin.EditorPlugin;
import oracle.olap.awm.plugin.PanelChanged;
import oracle.olapi.metadata.mdm.MdmDescriptionType;
import oracle.olapi.metadata.mdm.MdmMetadataProvider;
import oracle.olapi.metadata.mdm.MdmObject;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;
 
public class DimEditorPlugin implements EditorPlugin
{
  private JTextField shortDescTextField;
  private PanelChanged parentPanelChanged;
  private JPanel panel;
  private JLabel dimNameLabel;
  private MdmDescriptionType mdmShortDescrDescrType;

  public DimEditorPlugin()
  {
    panel = new JPanel();
    panel.setLayout(new GridLayout(3, 1));
    dimNameLabel = new JLabel();
    panel.add(dimNameLabel);
    shortDescTextField = new JTextField();
    panel.add(new JLabel("Short Description:"));
    panel.add(shortDescTextField);
    shortDescTextField.getDocument().addDocumentListener(new DocumentListener()
        {
          public void insertUpdate(DocumentEvent e)
          {
            changed();
          }
 
          public void removeUpdate(DocumentEvent e)
          {
            changed();
          }
 
          public void changedUpdate(DocumentEvent e)
          {
            changed();
          }
        });
  }
 
  public boolean isViewerForType(Connection conn, String name)
    throws Exception
  {
    return true;
  }
 
  // Get the MdmMetadataProvider of the session.
  private MdmMetadataProvider getMetadataProvider(Map params)
  {
    Object dp = params.get("DATAPROVIDER");
    if (dp instanceof MdmMetadataProvider)
    {
      MdmMetadataProvider mdp = (MdmMetadataProvider)dp;
      return mdp;
    }
    return null;
  }
  
  // Get the currently selected dimension and the schema from the params Map.
  // Get the MdmMetadataProvider and get the MdmPrimaryDimension for the
  // dimension.
  private MdmPrimaryDimension getDimension(Map params)
  {
    Object obj = null;
    String schema = "";
    if (params != null)
    {
      obj = params.get("dimobj");
      schema = (String)params.get("schema");
    }
    if (obj instanceof String)
    {
      String dimName = (String)obj;
      MdmMetadataProvider mdp = getMetadataProvider(params);
      if (mdp != null)
      {
        MdmObject mobj = mdp.getMetadataObject(schema + "." + dimName);
        if (mobj != null && mobj instanceof MdmPrimaryDimension)
        {
          MdmPrimaryDimension dim = (MdmPrimaryDimension)mobj;
          return dim;
        }
        else
          System.out.println("Cannot get the " + dimName + " dimension.");
      }
    }
    return null;
  }
 
  // Get the dimension and the short description of it. 
  // Display the short description.
  private void read(Map params)
  {
    MdmPrimaryDimension dim = getDimension(params);
    if (dim != null)
    {
      dimNameLabel.setText(dim.getName());
      mdmShortDescrDescrType =
        MdmDescriptionType.getShortDescriptionDescriptionType();
      String shortDesc = dim.getDescription(mdmShortDescrDescrType);
      shortDescTextField.setText(shortDesc);
    }
  }
 
  public JPanel getPanel(Connection conn, String name, Map params)
    throws Exception
  {
    read(params);
    return panel;
  }
 
  public void cleanup(String name)
  {  
  }
 
  public boolean validate(Connection conn, Component parent, String name,
                          Map params)
    throws Exception
  {
    String invalidDescr = "foo";
    if (shortDescTextField.getText().equals(invalidDescr))
    {
      JOptionPane.showMessageDialog(parent, "Description cannot be " +
                                    invalidDescr + ".");
      return false;
    }
    return true;
  }
 
  public void revert(Connection conn, Component parent, String name,
                     Map params)
    throws Exception
  {
    read(params);
  }
 
  public void showHelp(Connection conn, Component parent, String name,
                       Map params)
    throws Exception
  {
    JOptionPane.showMessageDialog(parent, "In Help.");
  }
 
  public boolean save(Connection conn, Component parent, String name,
                      Map params)
    throws Exception
  {
    // Get the currently selected dimension and set the short description for 
    // it.
    MdmPrimaryDimension dim = getDimension(params);
    dim.setDescription(mdmShortDescrDescrType, shortDescTextField.getText());
    // Get the MdmMetadataProvider.
    MdmMetadataProvider mdp = getMetadataProvider(params);
    if (mdp == null)
      return false;
    // Get the DataProvider and the TransactionProvider and commit the current
    // Transaction. If the Transaction is not committable, roll it back.
    try
    {
      mdp.getDataProvider().getTransactionProvider().commitCurrentTransaction();
    }
    catch (Exception e)
    {
      JOptionPane.showMessageDialog(parent, e.getMessage(), "Error",
                                    JOptionPane.ERROR_MESSAGE);
      try
      {
        mdp.getDataProvider()
           .getTransactionProvider()
           .rollbackCurrentTransaction();
      }
      catch (Exception e2)
      {
        // Ignore the exception.
      }
    }
    return true;
  }
 
  public void setValueChanged(Connection conn, String name, Map params,
                              PanelChanged parentPanelChanged)
  {
    this.parentPanelChanged = parentPanelChanged;
  }
 
  
  // Calls the changed() method of the PanelChanged object supplied by
  // Analytic Workspace Manager when it calls the setValueChanged method.
  public void changed()
  {
    if (parentPanelChanged != null)
      parentPanelChanged.changed();
  }  
}




Figure 3-10 shows the results of the MyDims <AWMNode> in the aw.xml document. A MyDims folder appears in the GLOBAL analytic workspace folder. The user has selected the MyDims folder. The property inspector displays the SQL statement of the MyDims <AWMNode> and the result of it, which is a table that has columns headed DIMENSION_NAME and DIMENSION_TYPE. The rows of the columns contains the names of the dimensions of the analytic workspace and the types of the dimensions.

The MyDims <AWMNode> has an unnamed child <AWMNode> that has a SQL statement that retrieves the names of the dimensions. Those names appear in the MyDims folder in the navigation tree. The unnamed <AWMNode> also specifies the DimEditorPlugin plug-in.


Figure 3-10 Results of the MyDims <AWMNode> in aw.xml

[image: Description of Figure 3-10 follows]






Figure 3-11 shows the Analytic Workspace Manager user interface after a user has selected the CHANNEL dimension in the MyDims folder in the navigation tree. The property inspector displays the user interface specified by DimEditorPlugin. The user interface includes a text field in which the user can change the value of the short description attribute.


Figure 3-11 Results of DimEditorPlugin

[image: Description of Figure 3-11 follows]






Figure 3-12 shows the result of the MyLevels <AWMNODE> that is the child of the MyDims <AWMNODE> in the aw.xml document. The SQL statement of the MyLevels <AWMNode> selects the LEVEL_NAME column from the USER_CUBE_DIM_LEVELS table for the currently selected dimension. Figure 3-12 shows the navigation tree folder with the MyLevels folder selected in the CHANNEL folder. In the property inspector is the result of the query.


Figure 3-12 Result of MyLevels <AWMNode> Under MyDims in aw.xml

[image: Description of Figure 3-12 follows]






Figure 3-13 shows the result of the unnamed <AWMNODE> that is the child of the MyLevels <AWMNODE> in the aw.xml document. The SQL statement of the unnamed <AWMNode> selects all columns from the USER_CUBE_DIM_LEVELS table for the currently selected dimension and level. Figure 3-13 shows the navigation tree folder with the TOTAL level selected in the MyLevels folder in the CHANNEL folder. The property inspector displays the result of the query.


Figure 3-13 Results of the Nested <AWMNode> in the MyLevels <AWMNode> in aw.xml

[image: Description of Figure 3-13 follows]












Example of Plug-in Descriptions

As discussed in "Describing the Available Plug-ins", the awmplugin.xml file contains descriptions of Java plug-ins that Analytic Workspace Manager displays. Figure 3-14 shows the Plugins tab of the About dialog box with the information that is specified by the awmplugin.xml document in Example 3-10.


Figure 3-14 Plugins Tab in the About Dialog Box

[image: Description of Figure 3-14 follows]






Example 3-10 shows the awmplugin.xml document that produces the result shown in Figure 3-14.


Example 3-10 Creating an awmplugins.xml Document


<?xml version="1.0" encoding="utf-8" ?>
<AWMPlugins>
  <Plugin name="Cube Viewer Plug-in" version="1.0"
          class="plugin112.CubeViewerPlugin">
    <Description>Displays the name of a cube.</Description>
  </Plugin>
  <Plugin name="Level Viewer Plug-in" version="1.0"
          class="plugin112.LevelViewerPlugin">
    <Description>Displays the name of a level.</Description>
  </Plugin>
  <Plugin name="Measure Viewer Plug-in" version="1.0"
          class="plugin112.MeasureViewerPlugin">
    <Description>Displays the name of a measure.</Description>
  </Plugin>
  <Plugin name="Delete Dimension Plug-in" version="2.0"
          class="plugin112.DeleteDimPlugin">
    <Description>Deletes a dimension in the MyDims folder.</Description>
  </Plugin>
  <Plugin name="Edit Dimension Plug-in" version="2.0"
          class="plugin112.DimEditorPlugin">
    <Description>Edits the short description of a dimension.</Description>
  </Plugin>
  <Plugin name="View XML Plug-in" version="1.0" class="plugin112.ViewXMLPlugin">
    <Description>Displays the XML for an OLAP measure.</Description>
  </Plugin>
</AWMPlugins>









Index

A?? B?? C?? D?? E?? F?? G?? H?? I?? J?? L?? M?? N?? O?? P?? R?? S?? T?? U?? V?? X??


Symbols

	$
	
	enclosing expression, 1.2.5.3



	{}
	
	enclosing bind variable, 1.1.4, 1.2.5.2
	enclosing hypertext parameter, 1.2.5.2








A

	Analytic Workspace Manager
	
	configuring for plug-ins, 2.1.1
	ways of customizing, Preface



	aw parameter
	
	of AWMPlugin methods, 2.2



	AWMCalcs element
	
	root of a calculation template, 1.2.5.1



	awmcalcs.xml document
	
	example of, 1.2.2, 1.2.3, 1.2.4
	in downloadable examples, 3.1
	location in database directory, 1.2.1



	AWMNode element
	
	of an AWMTree element, 1.1.6.2



	AWMPlugin interface
	
	examples of, 3.2.1, 3.2.2
	implementations loaded on startup, 2.1.2
	specification, 2.2



	AWMPlugins element
	
	root of a plug-in description, 2.5.2.1



	awmplugin.xml document
	
	description, 2.5
	example of, 3.4



	AWMTree element
	
	root of a SQL report, 1.1.6.1



	AWMTree prefix
	
	for type parameter values, 2.2.1



	awmtree.xml document
	
	example of, 1.1.2, 1.1.3, 1.1.4
	in downloadable examples, 3.1
	location in directory, 1.1.1
	location in navigation tree, 1.1.5



	aw.xml document
	
	example of, 3.3.3
	location in navigation tree, 1.1.5








B

	bind variables
	
	enclosed by braces, 1.1.4, 1.2.5.2
	for an AWMPlugin, 2.2.2.2
	in calculation templates, 1.2.2, 1.2.5.2
	in custom reports, 1.1.4
	referencing using lower case, 2.2.2.2
	replacing values in a WHERE clause, 1.1.1
	replacing values in a WHERE clause, example of, 1.1.4



	BIND_MAP Map
	
	for an AWMPlugin, 2.2.2.2
	keys and values, examples of, 2.2.3



	braces
	
	enclosing bind variable, 1.1.4, 1.2.5.2
	enclosing hypertext parameters, 1.2.5.2








C

	Calc element
	
	of an AWMCalcs element, 1.2.5.2



	CalcOptional element
	
	of a Calc or a CalcOptionalDefinitions element, 1.2.5.3
	supporting calculation options, 1.2.3



	CalcOptionalDefinitions element
	
	applying options to all calculations, 1.2.3
	of a AWMCalcs element, 1.2.5.4



	calculation templates
	
	adding options, 1.2.3
	description, 1.2
	example of, 1.2.2



	Category element
	
	of an AWMCalcs element, 1.2.5.5



	changed method, 2.3.2, 2.4
	class attribute
	
	of a Plugin element, 2.5.2.2



	cleanup method, 2.3.1, 2.4
	compressed file
	
	containing example code, 3.1



	configuring Analytic Workspace Manager for plug-ins, 2.1.1
	conn parameter
	
	of AWMPlugin methods, 2.2
	of ViewerPlugin methods, 2.3.1



	Connection object, 2.1.2
	CubeViewerPlugin class, 3.3.3
	cube.xml document
	
	example of, 3.3.2
	location in navigation tree, 1.1.5



	custom calculations, 1.2
	custom SQL reports
	
	adding to navigation tree, 1.1
	example, 1.1.2, 1.1.3, 1.1.3, 1.1.4








D

	default attribute
	
	of a Param element, 1.2.5.7



	DeleteDimPlugin class, 3.2.2
	description attribute
	
	of a Calc element, 1.2.5.2
	of a Category element, 1.2.5.5



	Description element
	
	of an AWMPlugins element, 2.5.2.3



	DimEditorPlugin class, 3.3.4
	dimension.xml
	
	example of, 3.3.1
	location in navigation tree, 1.1.5



	dollar sign
	
	enclosing expression, 1.2.5.3








E

	EditorPlugin interface
	
	examples of, 3.3.4
	specification, 2.3.2



	enabling plug-ins, 2.1.1
	examples
	
	downloadable, 3.1
	of awmcalcs.xml, 1.2.2, 1.2.3, 1.2.4
	of AWMPlugin, 3.2.1, 3.2.2
	of awmplugin.xml, 3.4
	of awmtree.xml, 1.1.2, 1.1.3, 1.1.4
	of aw.xml, 3.3.3
	of cube.xml document, 3.3.2
	of dimension.xml, 3.3.1
	of EditorPlugin, 3.3.4
	of schema.xml, 1.1.5
	of ViewerPlugin, 3.3.1, 3.3.2, 3.3.3



	expression attribute
	
	of a Calc element, 1.2.5.2
	of a CalcOptional element, 1.2.5.3
	of an Item element, 1.2.5.6



	expression syntax, 1.2.1





F

	folders
	
	creating in navigation tree, 1.1.3








G

	getMenu method, 2.1.2.1, 2.2, 2.4
	getPanel method, 2.3.1, 2.3.2, 2.4





H

	handle method, 2.1.2.1, 2.2, 2.4
	headings
	
	for XML documents, 1.1.1, 1.2.1, 2.5.1



	hypertext parameters
	
	creating links by using, 1.2.2
	enclosed by braces, 1.2.5.2
	referencing two or more, 1.2.5.2








I

	icon attribute
	
	example of, 1.1.5
	of an AWMNode element, 1.1.6.2



	icons
	
	in JAR file, 1.1.5
	in JAR file, example of, 1.1.5



	isSupported method, 2.1.2.1, 2.2, 2.4
	isViewerForType method, 2.3.1, 2.3.2, 2.4
	Item element
	
	of a Param element, 1.2.5.6








J

	JAR files
	
	containing multiple XML documents and plug-ins, 2.4
	directory structure of, 1.1.5
	files for icons included in, 1.1.5
	loaded on startup, 2.4
	location for, 2.4
	required by plug-ins, 2.4








L

	leaf element
	
	defined, 1.1.4



	LevelViewerPlugin class, 3.3.1





M

	MeasureViewerPlugin class, 3.3.2





N

	name attribute
	
	of a Calc element, 1.2.5.2
	of a CalcOptional element, 1.2.5.3
	of a Category element, 1.2.5.5
	of a Param element, 1.2.5.7
	of a Plugin element, 2.5.2.2
	of an AWMNode element, 1.1.6.2



	name parameter
	
	of ViewerPlugin methods, 2.3.1








O

	obj parameter
	
	of AWMPlugin methods, 2.2, 2.2.1



	OLAP expression syntax, 1.2.1
	options
	
	adding to calculation templates, 1.2.3



	Oracle Technology Network (OTN), 3.1, 3.1





P

	Param element
	
	of a Calc or a Params element, 1.2.5.7



	Params element
	
	of an AWMCalcs element, 1.2.5.8



	params parameter
	
	keys and values for a ViewerPlugin and EditorPlugin, 2.3.3
	keys and values for a ViewerPlugin, examples of, 2.3.4.1
	keys and values for an AWMPlugin, 2.2.2
	keys and values for an AWMPlugin, examples of, 2.2.3
	keys and values for an EditorPlugin, examples of, 2.3.4.2
	of AWMPlugin methods, 2.2
	of ViewerPlugin methods, 2.3.1



	parent parameter
	
	of AWMPlugin methods, 2.2
	of EditorPlugin methods, 2.3.2



	plug-in descriptions
	
	creating, 2.5.1
	example of, 3.4



	plug-in directory
	
	specifying, 2.1.1



	Plugin element
	
	of an AWMPlugins element, 2.5.2.2



	plugin112 package, 1.1.5
	plugin112.jar file
	
	containing example plug-ins, 3.1



	plug-ins
	
	descriptions of, 2.5.1
	enabling, 2.1.1
	examples of, 3.2.1, 3.2.2, 3.3.1, 3.3.2, 3.3.3, 3.3.4
	including package when specifying, 1.1.5
	prerequisites for creating, 2.4
	providing descriptions of, 2.5








R

	refreshing the navigation tree, 2.1.2.1
	refreshTree method, 2.1.2.1, 2.2, 2.4
	reports
	
	See SQL reports



	revert method, 2.3.2, 2.4
	root element
	
	of a calculation template, 1.2.5.1
	of a plug-in description, 2.5.2.1
	of a SQL report, 1.1.6.1



	run-time selections
	
	stored by type parameter of AWMNode, 1.1.4








S

	save method, 2.3.2, 2.4
	schema.xml document
	
	example of, 1.1.5
	location in navigation tree, 1.1.5



	setValueChanged method, 2.3.2, 2.4
	showHelp method, 2.3.2
	ShowIfQueryTrue element
	
	of an AWMNode element, 1.1.6.3



	sql attribute
	
	of a ShowIfQueryTrue element, 1.1.6.3
	of an AWMNode element, 1.1.6.2



	SQL reports
	
	adding to navigation tree, 1.1
	creating in object folders, 1.1.5, 1.1.5
	creating XML documents for, 1.1.1
	examples, 1.1.2, 1.1.3, 1.1.3, 1.1.4
	XML document structure, 1.1.6



	syntax for expressions, 1.2.1





T

	text attribute
	
	of a CalcOptional element, 1.2.5.3
	of an Item element, 1.2.5.6



	type attribute
	
	of a CalcOptional element, 1.2.5.3
	of a Param element, 1.2.5.7
	of an AWMNode element, 1.1.6.2



	type parameter
	
	of an AWMNode, storing run-time selection, 1.1.4
	of AWMPlugin methods, 2.2, 2.2.1








U

	ui attribute
	
	of a Calc element, 1.2.5.2








V

	validate method, 2.3.2, 2.4
	version attribute
	
	of a Plugin element, 2.5.2.2



	ViewerPlugin interface
	
	examples of, 3.3.1, 3.3.2, 3.3.3
	specification, 2.3.1



	viewSql attribute
	
	of an AWMNode element, 1.1.6.2



	ViewXMLPlugin class, 3.2.1





X

	XML documents
	
	for calculations, 1.2.1, 1.2.1
	for descriptions of plug-ins, 2.5, 3.4
	for SQL reports, 1.1.1
	headings, 1.1.1, 1.2.1, 2.5.1
	loaded on startup, 2.1.2



	XML formats
	
	for calculations, 1.2.5
	for descriptions of plug-ins, 2.5.2
	for SQL reports, 1.1.6






Oracle Legal Notices
Copyright Notice
Copyright ?? 1994-2015, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]
OEBPS/img/mydims.gif
Ele Tools Help

&5 Darabases
525 olap121 (global) - OLAP 115 nenston_type fron user_cube_dinensions where an_nane
PR schemas Fetched 4 rows in 0.0039 seconds

&8, cLosaL
5 53 Anaiytic Workspaces
£} GLOBAL (atached RW)

DIMENSION_NAME | DIMENSION_TYPE
CHANNEL STANDARD
CUSTOMER STANDARD

& PRODUCT STANDARD

3 cubes
£ Measure Folders TIHE TIHE

® Languages
-2) OLAP DML Programs.

0 CHANNEL
2 cusTOMER
23 PRODUCT
OTME
My Cubes

D






OEBPS/img/discount.gif
Calcutation:

Discount UNIT_PRICE () by 1 percent

Expression

PRICE_CUBE UNIT_PRICE"(L - (1/100))






OEBPS/img/total_level.gif
Ele Tools Help

S8 Darabuses
184 0lap121 (global - OLAP 119
R Schemas
&8 cLosaL
153 Analytic Workspaces
-3} GLOBAL (attached RW)
& Dimensions
3 cubes
£ Measure Folders
@ Langusges
-ZJ OLAP DML Programs.
EHDIMyDims
-0 CHANNEL
EOMyLevels
oA
T CHANNEL
EHD CUSTOMER.
DI MyLevels
-0 PRODUCT
DI MyLevels
EDTIME
DI MyLevels
- My Cubes

Je_din_Tevels where dinension_nane

7 and Tevel_nane

Fetched 1 rows in 0.0018 secands

DIMENSION_NAME | LEVEL_NAME

DESCRIPTION

CHANNEL TOTAL

D

Total






OEBPS/img/mylevels.gif
Ele Tools Help

BB Dwabases
184 0lap121 (global - OLAP 119
6 schemas
&8, cLosaL
153 Analytic Workspaces
-3} GLOBAL (attached RW)
26 Dimensions
1 CHANNEL
AT cusTomER
.5 pRODUCT
3 Levels
£ Hierarchies
{5 Auributes
“$* Mappings.
Views
fisb Dara Secury

55 mem
i PaMLy
FcLass
FromaL
o TvE
& cubes

£ Measure Folders
@, Languages
- MyDims

Fetched 4 rows in 0.0005 secands

| _nane fron user_cube_din_levels where dinension_nane

LEVEL_NAME

TTEM
FAMILY
CLass
TOTAL






OEBPS/img/option.gif
Caleufation Type: ([l Discount

Calcutation:

Discount UNIT_PRICE () by & percent

Funcate the decimal places]

Expression

TRUNC(PRICE_CUBE UNIT_PRICE™(L - (6/100)))






OEBPS/img/unitscube.gif
Ele Tools Help

S Databases
g olap121 (globa - OLAP11g
SR Schemas
&8, cLosaL
563 Analytic Workspaces
-3} GLOBAL fattached RW)
3 Dimensions
G565 Cubes
PRICE_CUBE
UNITS_CUBE
£ Measure Folders
& Languages
LI OLAP DML Programs
DImyDims
B MyCubes
e i
13 PRICE cUse
£ Maintenance Scripts
O taintenance Reports
@ My Tables
{5 Data Security Roles
D Reports

UNITS_CuBE






OEBPS/img/awmpluginseq.gif
Analytic

Workspace
Manager

retresttres /L






OEBPS/img/menu_big.gif
" CreateCalculatcd Measure

Specify General Calculated Measure Information

Name:
Short Label
Long Label
Description
Caleutation Type: [T, addition
OLAP DML Function
Calcutation: |& pemo caies

Tl

Addmeasure U] g y prior Period
[lo vy Periot o Dte

& My New Calcs

Tl Discourt

o Average






OEBPS/img/measview.gif
Ele Tools Help

55 Databases
g olap121 (globa - 0LAP 11
68 Schemas
&8, cLosaL
562 Analytic Workspaces
g} GLOBAL fattached RW)
R Dimensions
565 Cubes
PRICE_CUBE
&£ uniTs_cuse
£ Measures
b Calculated Measures
£ Mappings

Views
3 Cube Scripts

{5 Data Security
E-D MyMeasures
gz o]
i saes
T cosT
£33 SALES _3_PER_MOVAVG
£33 SALES _CHG_pP
£} SALES_CHG_PY
£} SALES_PCT_CHG_pP
£} SALES_PCT_CHG_PY
T saLes_pr
£ SALES_PROD_PRNT_St

[ D[]






OEBPS/dcommon/oracle-logo.jpg
ORACLE

OLAP Customizing
Analytic Workspace
Manager, 12c Release 1
(12.1)





OEBPS/dcommon/oracle-logo.jpg
ORACLE

OLAP Customizing
Analytic Workspace
Manager, 12c Release 1
(12.1)





OEBPS/img/schema_aw.gif
Ele Tools Help

55 Databases
& Belect column_nase, data_type fron a11_tab_coluns where]

G schemas Fetched 12 rows in 0.0001 seconds
&8 cLosaL
53 Anaitic Workspaces COLUMN.NAME | DATATYPE
5 @ wTavies ACCOUNT T VARCHAR?
- FIRSTHANE  VARCHARZ
= LASTHANE  VARCHER2
L] CHANNEL.DIM AODRESS VARCHAR?
55 CUSTOMER_DiM ADORESSZ | VARCHAR?
T PRICE_FACT army VARCHAR?
£33 PRODUCT_CHILO_PARENT || [STATE PRIV VARCHERZ
£3;PRODUCT DM COUNTRY VARCHAR?
= rme_om 21p_pc VARCHAR?
A PHORE VARCHAR?
= Fix VARCHAR?
LEANSCLODAL eaTL VARCHAR?
£33 COFCHANNEL PRIMARY
£} CBCUSTOMER_SHIMENTS
£} CRICUSTOMER_MARKET
£} COIPRODUCT_PRIMARY
£} COTIME_CALENDAR
£ CRITME_FISCAL
£33 CoUNITS_CUBE
3 CRSUNITS_cuse
G Data Security Roles
‘DReports.
- My 5QL Reports.






OEBPS/img/mymeasrs.gif
Ele Tools Help

55 Databases
g olap121 (globa - 0LAP 11
68 Schemas
&8, cLosaL
562 Analytic Workspaces
g} GLOBAL fattached RW)
R Dimensions
565 Cubes
(3 price_cuse
&£ uniTs_cuse
£ Measures
b Calculated Measures
£ Mappings

Views
3 Cube Scripts

{5 Data Security
SOy
oS
Tsates
FicosT
T sALES _3_peR o)
T sALEs_cHo PP
AL _cHG Py
£ SALES pCT CHC
£ SALES pCT CHC
Tsaces e
7 saLes prop_pR

K 7 R — D

easure_nane Trom user_cube_neasures where cube_nane = 7

Fetched 31 rows in 0.0003 seconds

MEASURE_NAME

UNITS
SALES

cosT
SALES_3_PER_HOVAVG
SALES_CHG_PP
SALES_CHG_PY.
SALES_PCT_CHG_PP
SALES_PCT_CHG_PY.
SALES_PP
SALES_PROD_PRNT_SHARE
SALES_PROD_TOT_SHARE
SALES_PY

SALES_YTD
SALES_YTD_CHG_PY.
SALES_YTD_PCT_CHG_PY.
SALES_YTD_PY

PROFLT

HOW_LS_WARGIN
PROFIT_3_PER_HOVAVG
PROFLT_CHG_PP
PROFLT_CHG_PY.
PROFLT_PCT_CHG_PP
PROFLT_PCT_CHG_PY.






OEBPS/img/xmlprofit.gif
<Metadata

Version="2.0"

MinimumDatabaseversior

<Cube

Owner="GLOBAI
Name="UNITS_CUBE">
<Measure>

<DerivedMeasure
ETMeasureColumniame="PROFIT"
Name="PROFIT"
MeasureExpression="UNITS_CUSE SALES - UNITS_CUBE COST'>
<Classification
Value="Awm DescriptionType=FREE_FORM"/>
<Description
Type="AWMDescriptionTyp:
Language="AMERICAN"
Value="FREE_FORM">
</Description>
<Description
Type="LongDescriptior
Language="AMERICAN'
Value="Prafit">
</Description>
<Description
Type="shortDescription
Language="AMERICAN'
Value="Prafit">
</Description>
<Description
Type="Descriptior
Language="AMERICAN"
Value="Prafit">
</Description>
</DerivedMeasure>
</Measure>

</Cube>

</Metadata>






OEBPS/img/viewseq.gif
Anatic
Workspace
Manager

ViewerPlugin

[ e g






OEBPS/img/report_folder.gif
Ele Tools Help

S8 Darabuses
18 0lap121 (global - OLAP 119
B schemss

DReports

E-DIMy SQL Reports

My User Tables

Select viewnane fron user_views

Fetched 12 rows in 0.0008 secands

VIEW_NAME
CHANNEL_PRIMARY_VIEW
CHANNEL_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_SHIPMENTS_VIEW
CUSTOMER_VIEW
PRLCE_CUBE_VIEW
PRODUCT_PRIMARY_VIEW
PRODUCT_VIEW
TIHE_CALENDAR_VIEW
TIME_FISCAL_VIEW
TIME_VIEW
UNITS_CUBE_VIEW






OEBPS/img/navtree.gif
fie Tools o
= H
g olap121 (obal - 0LAP 110 Gonerl |
e scnems T —
& & clom

5 53 Anaiytic Workspaces
£} GLOBAL (atached RW)
R Dimensions
565 Cubes
PRICE_CUBE
&£ uniTs_cuse
£ Measures
5 Calculated Measures
[l HOW_IS_MARGIN

Name:
: ‘GLOBAL.UNITS_CLBE PROFIT
Short Label Profit

Long Label Profit

Description: Profit

Calculation Type: [l Expression

TS _CusECOST

Ure PROFIT To Tem plate.

T Creste Caulted Measure
Jos  Creste Calulted Measure From Template
o save Calcurated Meas
o

View Dara FROFIT
o
JoPR  Delete Calculted Messure PROFIT
lo PROFT P
lo PROFIT_TD

[lo PROFIT_YTD_CHG_PY
[lo PROFIT_YTO_PCT_cHG_PY
[lo PROFIT_YTO_PY

[lo SALES >_FER_MOVAVC
lo saLES_cro_PP

[lo SALES_cHo_PY

[lo SALES_PCT_CHG_pP

[lo SALES_PCT_CHG_PY

lo sALES PP






OEBPS/img/report_bind.gif
Ele Tools Help

S8 Darabuses
184 olap121 (global - OLAP 119
B schemss
‘DReports.
=My SQL Reports
My User Tables
EHDIMy User Views
£ CHANNEL_PRIMARY_VIEW
£33 CHANNEL ViEW

£33 CUSTOMER_SHIMENTS VIEW
13 CUSTOMER ViEW

£33 PRICE_CUBEVIEW

£33 PRODUCT_PRIMARY_VIEW
£33 PRODUCT VIEW

£ TIME_CALENDAR VIEW

£ TIME_FISCAL ViEW

T TmEviEw

£33 UNITS _CUBE ViEw

SELECT * FROM user_tab_colunns WHERE table_nane

Fetched 25 rows in 0.0002 seconds

TABLE_NAME

COLUMN_NAME

DATATYPE

CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_WARKET_VIEW

DIN_KEY
LEVEL_NAHE

MEMBER_TYPE

DIM_ORDER

HIER_ORDER
LONG_DESCRIPTLON
SHORT_DESCRIPTLON
TOTAL_LONG_DESCRIPTION
TOTAL_LONG_DESCRIPTIONL
MARKET_SEGHENT_LONG_DESC
MARKET_SEGHENT_LONG_DE_L
ACCOUNT_LONG_DESCRIPTION
ACCOUNT_LONG_DESCRIPTI_L
SHLP_TO_LONG_DESCRIPTION
SHIP_TO_LONG_DESCRIPTL_L
PARENT

DEPTH

ToTAL

CUSTOMER_TOTAL_TD
MARKET_SEGHENT
CUSTOMER_WARKET_SEGHENT_
ACCOUNT
CUSTOMER_ACCOUNT_ID
SHIP_TO
CUSTOMER_SHIP_TO_ID

VARCHARZ
VARCHARZ
VARCHAR2
NUMBER.

NUMBER.

VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHAR2
NUMBER.

VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHARZ
VARCHAR2

]






OEBPS/dcommon/oracle.gif





OEBPS/img/awmconfig.gif
Preference

Value

ElGeneral
Display object as
Template directory
Look andl Feel (Restart of AWM required)
EIOLAP Home Page Settings
Disatale OLAP Home Page
Display Time-out in seconds)
ProxyServer
Proxy Server Port
ElLogging
Application Logging File
Application Logging Level
Session Logging Directory Location
Session Log File Name Prefix
Session Logging Level
EMainenance Log Settings
Maintenance Log Logging Level
Maximum Number of Errors Logged Per
ElMapping
Hide Graphical Mapping View
EPlugin
Enable plugins
Plugin directory
ElCalculated measure
Display measure name qualified by cube

Help

Oracle 2

Nane

plugin






OEBPS/img/gregorian.gif
Caleulation Type: ([l My Period to Date =

Caleutation:

Greaorian vear ta date for UNITS L) inthe TIME dimension and TIMECALENDAR. hierarchy. Aggregate over [
(Gregorian quarter
(Gregorian month
(Gregorian week

lancestor at fevel

using sumfrom the beainning. of the period,

[] Truncate the decima places

Expression

SUM(UNITS_CUBE UNITS) OVER HIERARCHY (TIME.CALENDAR  BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER WITHIN
CRECORIAN YEAR)






OEBPS/img/editseq.gif
Analytic

Werkspace orPlugin anelChanges

e EdtorPugi PaneiChanged
isViewerForType

ooslean

setvalueChanged

»|

getPane!
Panel_

valdate H
oalean

revert

clearup H

| o g






OEBPS/img/mydims_mylevels.gif
Ele Tools Help

S8 Darabuses
184 0lap121 (global - OLAP 119
R Schemas
&8 cLosaL
153 Analytic Workspaces
-3} GLOBAL (attached RW)
& Dimensions
3 cubes
£ Measure Folders
@ Langusges
-ZJ OLAP DML Programs.
EHDIMyDims
-0 CHANNEL

T canneL
EHD CUSTOMER.

DI MyLevels
-0 PRODUCT

DI MyLevels
EDTIME

DI MyLevels
- My Cubes

Fetect Tevel_nane fron user_cube_ia_Tevels where dimensid

Fetched 2 rows in 0.0019 seconds

LEVEL_NAME

CHANNEL
TOTAL

D






OEBPS/img/awmtools.gif
Create Fact Viewwith Measure Dimension,

Oracle12c
Analytic Workspace Manager

Oracle Database 12 c Release 1

_EEE!i

Copyrigt 2003, 2012, Oracle. Al Righs Reserved ‘






OEBPS/img/report_view1.gif
Ele Tools Help

S8 Darabuses
184 0lap121 (global - OLAP 119
B schemss

DReports

gl User views |

Select viennane fron user_views

Fetched 12 rows in 0.0035 seconds

VIEW_NAME
CHANNEL_PRIMARY_VIEW
CHANNEL_VIEW
CUSTOMER_WARKET_VIEW
CUSTOMER_SHIPHENTS_VIEW
CUSTOMER_VIEW
PRLCE_CUBE_VIEW
PRODUCT_PRIMARY_VIEW
PRODUCT_VIEW
TIHE_CALENDAR_VIEW
TIME_FISCAL_VIEW
TIME_VIEW
UNITS_CUBE_VIEW






OEBPS/img/family.gif
Ele Tools H

elp

EE Dwabases

g olap121 (globa - 0LAP 11
6 Schemas
&8, cLosaL
5 53 Anaiytic Workspaces

-3} GLOBAL (attached RW)
26 Dimensions

1 CHANNEL

AT cusTomER

.5 pRODUCT

3 Levels

£ Hierarchies

{5 Auributes

“$* Mappings.

BRyviews

fish Dara Secury

EOMyLevels

& cubes
£ Measure Folders
@ Langusges

- MyDims

- My Cubes

I D]

FAMILY






OEBPS/img/mycubes.gif
Ele Tools Help

S8 Darabuses
184 0lap121 (global) - OLAP 11g
R schemas
&8 cLosaL
153 Analytic Workspaces
-3} GLOBAL (attached RW)
& Dimensions
63 cubes
PRICE_CUBE
UNITS_CUBE
£ Measure Folsers
@ Langusges
-ZJ OLAP DML Programs.

£33 UNITS _CUsE

5 PRice_cuse
By Maitenance scripts
{0 Maintenance Reports

@ My Tables
5 Data Security Roles
O Reports

Select cube_nane fron user_cubes where an_nane

Fetched 2 rows in 0.0106 secands

CUBE_NAME

UNITS_CUBE
PRICE_CUBE






OEBPS/img/awmplugin.gif
About | Praperties

Name Version| Status Description
(Cube Viewsr Plug-in 1.0 Loaded Displays the name of a cube
LevelViewsrPlug-in 10 Loaded Displays the name of a evel.

Measure Viewer Plug-in 1.0 Loaded Displays the name of a measure,

Delete Dimension Plug-in 20 Loaded Deletes a dimension in the MyDims folder.
Edit Dimension Plug-in 20 Loaded Edits the short description of a dimension.
iew XML Plug-in 10 Loaded Displays the XML for an OLAP measure.

(o]






OEBPS/img/menu.gif
[ Create Calculated Measure _

Speciy General Cal

Name:
Short Label
Long Label
Description

Caleutation Type:

Caleutation:

(culated Measure Information

Addition
Cumulative Minimum

[ User Defined Expressions
Tlo OLAR Expression synrax

Add measure Uil g OLAP DML Expression

OLAP DML Function
=3

B e






OEBPS/img/deltdim2.gif
Ele Tools H

elp

EE Dwabases

g olap121 (globa - 0LAP 11
6 Schemas
&8, cLosaL
5 53 Anaiytic Workspaces

-3} GLOBAL (attached RW)
& Dimensions

3 cubes

£ Measure Folders

@ Langusges

-ZJ OLAP DML Programs.
EHDIMyDims

{23 CHANNEL.

CUSTOMER

Short Description:

Customer

=
3 PRODI

OTME
My Cubes






OEBPS/img/deltcust.gif
Analytic Workspace Manager

Ele Tools Help

S8 Darabuses
14 olap121 (global) - OLA|
S schemas
&8 cLosaL

Delete CUSTOMER?

SOmyoims

FTIME
TiProbUCT Customer

£ CHANNEL
-0 MyCubes






OEBPS/img/dimeditr.gif
Ele Tools Help

S8 Darabuses
184 0lap121 (global - OLAP 119
R Schemas
&8 cLosaL
153 Analytic Workspaces
-3} GLOBAL (attached RW)
& Dimensions
3 cubes
£ Measure Folders
@ Langusges
-ZJ OLAP DML Programs.
EHDIMyDims
SOEE
E D MyLevels
T CHANNEL
FyroraL
{2 CUSTOMER
- PRODUCT
DOTIME
- My Cubes

CHANNEL

Short Description:

Channel






